Skip to main content

Transient Thermal Diffusivity Measurement via the Flying Spot and Parabola Method

  • Conference paper
  • First Online:
Advances in Thermal Science and Energy (JITH 2022)

Abstract

In a previous work, we developed methods based on the Pulsed Flying Spot (PFS) to estimate the thermal diffusivity on the plane of (an)isotropic materials. This thermal property is dependent on temperature or water content. In this work, we propose the device be used in transient temperature conditions to estimate the thermal diffusivity of 304L stainless steel. The first measurement in transient conditions makes it possible to simply and rapidly characterize many materials for temperature conditions other than the ambient. In the second step, we carry out transient thermal diffusivity measurements as a function of water content. We show, for a particularly heterogeneous material (a stoneware tile), that the thermal diffusivity is clearly dependent on the water content. Imbibition, for stoneware, leads to an increase in thermal diffusivity while drying leads to a decrease in the same value. This preliminary work can lead to contactless measurement of water content for different types of materials (food matrix, building materials, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walczak A., Szypłowska A., Janik G., Pęczkowski G.: Dynamics of volumetric moisture in sand caused by injection irrigation physical model. Water, Switzerl. 13(11), art. no. 1603 (2021)

    Google Scholar 

  2. Ledieu, J., De Ridder, P., De Clerck, P., Dautrebande, S.: A method of measuring soil moisture by time-domain reflectometry. J. Hydrol. 88(3–4), 319–328 (1986)

    Article  Google Scholar 

  3. Tidwell, V.C., Meigs, L.C., Christian-Frear, T., Boney, C.: Effects of Spatially Heterogeneous Porosity on Matrix-Diffusion as Investigated by X Ray Absorption Imaging. Sandia National Laboratories Geohydrology Department Albuquerque, New Mexico

    Google Scholar 

  4. Roels, S., Carmeliet, J.: Analysis of moisture flow in porous materials using microfocus X-ray radiography. Int. J. Heat Mass Transf. 49, 4762–4772 (2006)

    Article  Google Scholar 

  5. Dvinskikh, S.V., Henriksson, M., Mendicino, A.L., Fortino, S., Toratti, T.: NMR imaging study and multi-Fickian numerical simulation of moisture transfer in Norway spruce samples. Eng. Struct. 33, 3079–3086 (2011)

    Google Scholar 

  6. MacMillan, M.B., Schneider, M.H., Sharp, A.R., Balcom, B.J.: Magnetic resonance imaging of water concentration in low moisture content wood. Wood Fiber Sci. 34(2), 276–286 (2002)

    CAS  Google Scholar 

  7. Hameury, S., Sterley, M.: Magnetic resonance imaging of moisture distribution in Pinus sylvestris L. exposed to daily indoor relative humidity fluctuations. Wood Mat. Sci. Eng. 1(3), 116–126 (2007)

    Google Scholar 

  8. Ekstedt, J., Rosenkilde, A., Hameury, S., Sterley, M., Berglind, H.: Measurement of moisture content profiles in coated and uncoated Scots Pine using Magnetic Resonance Imaging, Warsaw, Poland. In: Conference—Quality Control for Wood and Wood Products (2007)

    Google Scholar 

  9. Wagner, M.J., Loubat, M., Sommier, A., Le Ray, D., Collewet, G., Broyart, B., Quintard, H., Davenel, A., Trystram, G., Lucas T.: MRI study of bread baking: experimental device and MRI signal analysis. Int. J. Food Sci. Tech. 43(6), 1129–1139 (2008)

    Google Scholar 

  10. Gaverina, L., Batsale, J.C., Sommier, A., Pradere, C.: Pulsed flying spot with the logarithmic parabolas method for the estimation of in-plane thermal diffusivity fields on heterogeneous and anisotropic materials. J. Appl. Phys. 121(11), 115105 (2017)

    Article  Google Scholar 

  11. Jandrlić, I., Rešković, S.: Choosing the optimal coating for thermographic inspection. The Holistic App. Environ. 5(3), 127–134 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Sommier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sommier, A. et al. (2024). Transient Thermal Diffusivity Measurement via the Flying Spot and Parabola Method. In: Ali-Toudert, F., Draoui, A., Halouani, K., Hasnaoui, M., Jemni, A., Tadrist, L. (eds) Advances in Thermal Science and Energy. JITH 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-43934-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43934-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43933-9

  • Online ISBN: 978-3-031-43934-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics