Skip to main content
Log in

Polyploidy and differentiation in the transitional epithelium of mouse urinary bladder

  • Published:
Chromosoma Aims and scope Submit manuscript

Summary

  1. 1.

    There is a wide range in the size of nuclei from transitional epithelium of mouse urinary bladder, with the largest nuclei being nearest the lumen. These characteristics are present at birth and do not change significantly thereafter.

  2. 2.

    Microspectrophotometric measurements of nuclear DNA fall into several classes, indicating the presence of polyploidy. All surface cells and some deep cells are polyploid.

  3. 3.

    Neither the amount of DNA per nucleus nor the distribution of nuclear diameters is significantly altered in pituitary dwarf mice.

  4. 4.

    The counting of chromosomes in squash preparations of transitional epithelium showed the presence of polyploid chromosome groups in the mouse embryo from day 16 2/3 to birth.

  5. 5.

    The appearance of polyploidy in embryonic transitional epithelium was paralleled by the appearance of many binucleate cells, the nuclei of which were seen to enter division synchronously. The widespread presence of two prophases in a single cell and the lack of such duality in the later stages of division was taken as evidence of polyploid formation through fusion at late prophase and subsequent normal division into two polyploid nuclei.

  6. 6.

    The manner in which polyploidy was involved in the histogenesis of transitional epithelium led to the hypothesis that one characteristic of cytoplasmic differentiation in surface cells was brought about, at least in part, by nuclear differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allfrey, V. G., A. E. Murphy andH. Stern: The chemistry of the cell. Advanc. Enzymol.16, 411–500 (1955).

    CAS  Google Scholar 

  • Beermann, W.: Nuclear differentiation and functional morphology of chromosomes. Cold Spr. Harb. Symp. quant. Biol.21, 217–232 (1956).

    CAS  Google Scholar 

  • Berrill, N. J.: The determination of size, edit.Willier, et. al. Philadelphia: W. B. Saunders Company 1955.

    Google Scholar 

  • Briggs, R., andTh. J. King: Changes in the nuclei of differentiating endoderm cells as revealed by nuclear transplantation. J. Morph.100, 269–311 (1957).

    Article  Google Scholar 

  • Fankhauser, G. T.: Effects of changes in chromosome number on amphibian development. Quart. Rev. Biol.20, 20–78 (1945).

    Article  Google Scholar 

  • Fleroff, N.: Studien über den Bau und die funktionelle Struktur des Harnblasenepithels der Nagetiere. Z. Zellforsch.24, 360–392 (1936).

    Article  Google Scholar 

  • Francis, T.: Studies on hereditary dwarfism in mice. Acta path. microbiol. scand.21, 928–944 (1944).

    Google Scholar 

  • Gluecksohn-Schoenheimer, S.: The morphological manifestations of a dominant mutation in mice affecting tail and urogenital system. Genetics28, 341–348 (1943).

    PubMed  CAS  Google Scholar 

  • Grüneberg, H.: The development of some external features in mouse embryos. J. Hered.34, 89–92 (1943).

    Google Scholar 

  • Helweg-Larsen, H. F.: Nuclear class series. Copenhagen: Munksgaard 1952.

    Google Scholar 

  • Himes, M., andL. Moriber: A triple stain for deoxyribonucleic acid, polysaccharides and proteins. Stain Technol.31, 67–70 (1956).

    PubMed  CAS  Google Scholar 

  • Hsu, T. C., andC. M. Pomerat: Mammalian chromosomes in vitro. III on somatic aneuploidy. J. Morph.93, 301–330 (1953).

    Article  Google Scholar 

  • Huskins, C. L.: The subdivision of the chromosomes and their multiplication in terms of gene structure and gene action. Amer. Naturalist81, 401–434 (1947).

    Article  CAS  Google Scholar 

  • —: Nuclear reproduction. Int. Rev. Cytol.1, 9–26 (1952).

    Article  CAS  Google Scholar 

  • Jost, A.: The secretory activities of fetal endocrine glands and their effect upon, target organs. Josiah Macy, jr. 3. Conference on Gestation, 1957, p. 129–171.

  • King, T. L., andR. Briggs: Transplantation of living nuclei of late gastrulae into enucleated eggs ofRana pipiens. J. Embryol. exp. Morph.2, 73–80 (1954).

    Google Scholar 

  • Leuchtenberger, C., H. Fr. Helweg-Larsen andL. Murmanis: Relationship between hereditary pituitary dwarfism and the formation of multiple DNA classes in mice. Lab. Invest.3, 245–260 (1954).

    PubMed  CAS  Google Scholar 

  • Leuchtenberger, C., R. Leuchtenberger andA. M. Davis: A microspectrophotometric study of the desoxyribose nucleic acid (DNA) content in cells of normal and malignant human tissues. Amer. J. Path.30, 65–85 (1954).

    PubMed  CAS  Google Scholar 

  • Mende, T. J., andE. L. Chambers: Distribution of mucopolysaccharide and alkaline phosphatase in transitional epithelia. J. Histochem. Cytochem.5, 99–104 (1957).

    PubMed  CAS  Google Scholar 

  • Pollister, A. W.: Photomultiplier apparatus for microspectrophotometry of cells. Lab. Invest.1, 106–114 (1952).

    PubMed  CAS  Google Scholar 

  • Reynolds, S. R. M.: Developmental changes and future requirements. Cold. Spr. Harb. Symp. quant. Biol.19, 1–2 (1954).

    CAS  Google Scholar 

  • Schultz, Jack: Interrelations between nucleus and cytoplasm: problems at the biological level. Exp. Cell Res.2, Suppl., 17–43 (1952).

    CAS  Google Scholar 

  • Sinnott, E. W., L. C. Dunn andT. H. Dobzhansky: Principles of genetics, p. 368. New York: McGraw-Hill 1950.

    Google Scholar 

  • Smith, P. E., andC. Dortzback: The first appearance in the anterior pituitary of the developing pig fetus of detectable amounts of the hormone stimulating ovarian maturity and general body growth. Anat. Rec.43, 277–297 (1929).

    Article  Google Scholar 

  • Spemann, H.: Embryonic development and induction. New Haven: Yale University Press 1938.

    Google Scholar 

  • Swift, H. H.: The deoxyribose nucleic acid content of animal nuclei. Physiol. Zool.23, 169–198 (1950).

    PubMed  CAS  Google Scholar 

  • Swift, H., andE. Rasch: Microphotometry with visible light. Physical techniques in biological research III, edit.Oster andPollister, p. 353–400. New York: Academic Press 1956.

    Google Scholar 

  • Therman, E., u.S. Timonen: Inconstancy of the human somatic chromosomes complement. Hereditas (Lund)37, 266–279 (1951).

    Article  Google Scholar 

  • Tjio, J. H., u.A. Levan: The chromosome number of man. Hereditas (Lund)42, 1–6 (1956).

    Article  Google Scholar 

  • Tonomura, A., andG. Yerganian: Aneuploidy in bone marrow cells of the Chinese hamster,Cricetulus griseus. Anat. Rec.127, 377 (1957).

    Google Scholar 

  • Vulpè, M. Renewal of epithelium of the urinary bladder. M. Sc. thesis. Montreal: McGill University 1954.

    Google Scholar 

  • Walker, B. E.: Polyploidy in transitional epithelium of the bladder in mice. Anat. Rec.121, 379 (1955).

    Google Scholar 

  • Walker, B. E., andE. R. Boothroyd: Chromosome numbers in somatic tissues of mouse and man. Genetics39, 210–219 (1954).

    PubMed  CAS  Google Scholar 

  • Weiss, P.: Some introductory remarks on the cellular basis of differentiation. J. Embryol. Exp. Morph.1, 181–211 (1953).

    Google Scholar 

  • White, M. J. D.: Animal cytology and evolution. Cambridge: Cambridge University Press 1945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, B.E. Polyploidy and differentiation in the transitional epithelium of mouse urinary bladder. Chromosoma 9, 105–118 (1957). https://doi.org/10.1007/BF02568069

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02568069

Keywords

Navigation