Skip to main content
Log in

Prospective study of radial bone mineral density in a geographically defined population of postmenopausal Caucasian women

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The radial bone mineral density (BMD) mass of 324 Caucasian women, aged 55–80 years, from geographically defined areas was evaluated in 1983 using single photon absorptiometry; 271 of these women (86%) were reexamined 5 years later in 1988. More than 65% of women lost radial BMD in exces of 1%/year in the 5-year follow-up. Thirty percent of women lost at least 2%/year. Baseline radial BMD measures taken in 1983 were highly predictive of the 1988 radial BMD values, explaining approximately 82% of the variability. The rate of bone change, expressed as percent change or 5-year difference (g/cm2), was not associated with baseline radial BMD value. Rate of change was not strongly associated with chronologic age or years since menopause, even when data were restricted to those women who reported no previous use of perimenopausal estrogen or thiazide medication. We conclude that BMD loss in a general population may be more substantial than previously believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnston CC Jr, Norton JA, Khariri RA, Longcope C (1979) Age-related bone loss. In: Barzel U (ed) Osteoporosis II. Grune and Stratton, New York, pp 91–100

    Google Scholar 

  2. Hui SL, Wiske PS, Norton JA, Johnston CC Jr (1982) A prospective study of change in bone mass with age in postmenopausal women. J Chron Dis 35:715–725

    Article  PubMed  CAS  Google Scholar 

  3. Davis JW, Ross PD, Wasnich RD, Maclean CJ, Vogel JM (1989) Comparison of cross-sectional and longitudinal measurements of age-related changes in bone mineral content. J Bone Miner Res 4:351–357

    PubMed  CAS  Google Scholar 

  4. Riggs BL, Wahner HW, Melton LJ III, Richelson LS, Judd HL, Offord KP (1986) Rates of bone, loss in the appendicular and axial skeletons of women: evidence of substantial vertebral bone loss before menopause. J Clin Invest 77:1487–1491

    PubMed  CAS  Google Scholar 

  5. Ruegsegger P, Dambacher MA, Ruegsegger E, Fischer JA, Anliker M (1984) Bone loss in premenopausal and postmenopausal women. J Bone Joint Surg 66A:1015–1023

    Google Scholar 

  6. Goldsmith NF, Johnston JO, Picetti G, Garcia C (1973) Bone mineral in the radius and vertebral osteoporosis in an insured population: a correlative study using125±photon absorptiometry and minerature roentgenography. J Bone Joint Surg 55A:1276–1293

    Google Scholar 

  7. Boyd RM, Cameron EC, McIntosh HW, Walker VR (1974) Measurement of bone mineral content in vivo using photon absorptiometry. Can Med Assoc J 111:1201–1205

    PubMed  CAS  Google Scholar 

  8. Mazess RB, Cameron JR (1974) Bone mineral content in normal U.S. whites. In: Mazess R (ed) International Conference on Bone Mineral Measurement. US Department of Health, Education and Welfare, NIH 75-683, Washington, DC, pp 228–238

    Google Scholar 

  9. Smith DM, Khairi MRA, Johnston CC Jr (1975) The loss of bone mineral with aging and its relationship to risk of fracture. J Clin Invest 56:311–318

    Article  PubMed  CAS  Google Scholar 

  10. Sowers MFR, Wallace RB, Lemke JH (1986) The relationship of bone mass and fracture history to fluoride and calcium intake: a study of three communities. Am J Clin Nutr 44:889–898

    PubMed  CAS  Google Scholar 

  11. Runge H, Fengler F, Franke J, Koall W (1980) Ermittlung des peripheren Knochenmineralgehaltes bei Normalpersonen und Patienten mit verschiedenen Knochenerkrankungen, bestimmt mit Hilfe der Photonenabsorptionstechnik am Radius. Radiologe 20:505–514

    PubMed  CAS  Google Scholar 

  12. Ringe JD, Rehpenning W, Steinhagen-Thiessen E (1985) Increasing skeletal involution in the elderly? Mech Ageing Dev 29:83–88.

    Article  PubMed  CAS  Google Scholar 

  13. Mazess RB (1982) On aging bone loss. Clin Orthop Rel Res 165:239–352

    Google Scholar 

  14. 1970 Iowa Census of the U.S. Census. Bureau of the Census, Washington DC, 1973

  15. Matkovic V, Kostial K, Simonovic I, Buzina R, Brodarec A, Nordin BEC (1979) Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr 32:540–549

    PubMed  CAS  Google Scholar 

  16. Sowers MFR, Wallace RB, Lemke JH (1985) Correlates of mid-radius bone density among postmenopausal women: a community study. Am J Clin Nutr 41:1045–1053

    PubMed  CAS  Google Scholar 

  17. Cameron JR, Sorenson J (1963) Measurement of bone mineral in vivo: an improved method. Science 142:230–232

    Article  PubMed  CAS  Google Scholar 

  18. Cameron JR, Mazess RB, Sorensen JA (1968) Precision and accuracy of bone mineral determination by direct photon absorptiometry. Invest Radiol 3:141–150

    Article  PubMed  CAS  Google Scholar 

  19. Kleinbaum DG, Kupper LL (1988) Applied regression analysis and other multivariable methods. Duxbury Press, North Scituate, MA

    Google Scholar 

  20. Schlesselman JJ (1982) Case-control studies: design, conduct, analysis, Oxford University Press, New York

    Google Scholar 

  21. Ott J (1979) Detection of rare major genes in lipid levels. Hum Genet 51:79–81

    Article  PubMed  CAS  Google Scholar 

  22. Riggs BL, Melton LJ III (1983) Evidence for two distinct syndromes of involutional osteoporosis. Am J Med 75:899–901

    Article  PubMed  CAS  Google Scholar 

  23. Melton LJ III, Cummings SR (1987) Heterogeneity of age-related fractures: implications for epidemiology. Bone Miner 2:321–331

    PubMed  Google Scholar 

  24. Cann CE, Genant HK, Ettinger B, Gordon G (1980) Spinal mineral loss in oophorectomized women: determination by quantitative computerized tomography. JAMA 244:2056–2059

    Article  PubMed  CAS  Google Scholar 

  25. Nordin BE, Need AG, Chatterton BE, Horowitz M, Morris HA (1990) The relative contributions of age and years since menopause to postmenopausal bone loss. J Clin Endocrinol Metab 70(1):83–88.

    Article  PubMed  CAS  Google Scholar 

  26. Ross PD, Wasnich RD, Vogel JM (1988) Detection of prefracture spinal osteoporosis using bone mineral absorptiometry. J Bone Miner Res 3:1–11

    Article  PubMed  CAS  Google Scholar 

  27. Hui SL, Slemenda CW, Johnston CC Jr (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81:1804–1809

    PubMed  CAS  Google Scholar 

  28. Christiansen C, Rodbro P (1975) Estimation of total body calcium from the bone mineral content of the forearm. Scand J Clin Lab Invest 35:433–449

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sowers, M.F., Clark, K., Wallace, R. et al. Prospective study of radial bone mineral density in a geographically defined population of postmenopausal Caucasian women. Calcif Tissue Int 48, 232–239 (1991). https://doi.org/10.1007/BF02556373

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556373

Key words

Navigation