Skip to main content
Log in

Effects of a high fat-sucrose diet on cortical bone morphology and biomechanics

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

High fat-sucrose (HFS) diets can reportedly produce glucose intolerance and hyperinsulinemia that may indirectly have deleterious effects on bone. The effects of a high-fat diet on calcium absorption, bone calcium content, and bone mechanical properties, however, remain controversial. Thus, we examined the morphological and biomechanical adaptations in limb bones of rats that were fed a HFS diet. Female Sprague-Dawley rats (8 weeks old) were randomly assigned to two groups, either a control group (n=9) fed a standard diet (low-fat complex-carbohydrate) or an experimental group (n=9) fed a HFS diet for 10 weeks. The right tibia and second metatarsus (MT) were fractured in three-point bending, and contralateral bones were used for morphological and histological analyses. HFS tibias had significantly lower maximum load and failure energy, and tensile stress at the proportional limit for both HFS tibia and MT was significantly less than controls. In addition, the elastic modulus and density of the HFS MT was significantly lower than controls. Geometry of the tibial mid-diaphysial cross section did not differ for the two diets, but the cortical cross-sectional area of HFS MT increased significantly compared to control MT. The total number of osteons in the middiaphysis of HFS MT decreased, but tibial and MT porosities did not change with the HFS diet. Our results suggest that the deleterious effects of the HFS diet may be more related to changes in the material properties of the cortical bone rather than to osteoporotic changes in the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grimditch GK, Barnard RJ, Sternlicht E, Whitson RH, Kaplan SA (1987) Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles. Am J Physiol 252:E420-E425

    PubMed  CAS  Google Scholar 

  2. Grimditch GK, Barnard RJ, Hendricks L, Weitzman D (1988) Peripheral insulin sensitivity as modified by diet and exercise training. Am J Clin Nutr 48:38–43

    PubMed  CAS  Google Scholar 

  3. Lemann J Jr, Lennon EJ, Piering WR, Prien EL Jr, Ricanati ES (1970) Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magnesium in man. J Lab Clin Med 75:578–585

    PubMed  CAS  Google Scholar 

  4. Wood RJ, Allen LH (1983) Evidence for insulin involvement in arginine- and glucose-induced hypercalciuria in the rat. J Nutr 113:1561–1567

    PubMed  CAS  Google Scholar 

  5. DeFronzo RA, Cooke CR, Andes R, Faloona GR, Davis PJ (1975) The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J Clin Invest 55:845–855

    Article  PubMed  CAS  Google Scholar 

  6. Holl MG, Allen LH (1987) Sucrose ingestion, insulin response and mineral metabolism in humans. J Nutr 117:1229–1233

    PubMed  CAS  Google Scholar 

  7. Rosenbloom AL, Lezotte DC, Weber T, Gudat J, Heller DR, Weber ML, Klein S, Kennedy BB (1977) Diminution of bone mass in childhood diabetes. Diabetes 26:1052–1055

    PubMed  CAS  Google Scholar 

  8. Levin ME, Boisseau VC, Avioli LV (1976) Effects of diabetes mellitus of bone mass in juvenile and adult onset diabetics. N Engl J Med 294:241–245

    Article  PubMed  CAS  Google Scholar 

  9. McNair P, Madsbad C, Christiansen C, Faber OK, Transbol I, Binder C (1978) Osteopenia of insulin-treated diabetes mellitus: its relation to age of onset, sex, and duration of disease. Diabetologia 15:87–93

    Article  PubMed  CAS  Google Scholar 

  10. Soejima K, Landing BH (1986) Osteoporosis in juvenile-onset diabetes mellitus: morphometric and comparative studies. Pediatr Pathol 6:289–299

    PubMed  CAS  Google Scholar 

  11. Einhorn TA, Boskey AL, Gundberg CM, Vigorita VJ, Devlin VJ, Beyer MM (1988) The mineral and mechanical properties of bone in chronic experimental diabetes. J Orthop Res 6:317–323

    Article  PubMed  CAS  Google Scholar 

  12. Shires R, Teitelbaum SL, Bergfeld MA, Fallon MD, Slatopolsky E, Avioli LV (1981) The effect of streptozotocin-induced chronic diabetes mellitus on bone and mineral homeostasis in the rat. J Lab Clin Med 97:231–240

    PubMed  CAS  Google Scholar 

  13. Rosholt MN, Hegarty PVJ (1981) Mineralization of different bones in streptozotocin-diabetic rats: study on the concentration of eight minerals. Am J Clin Nutr 34:1680–1685

    PubMed  CAS  Google Scholar 

  14. Goodman WG, Hori MT (1984) Diminished bone formation in experimental diabetics. Diabetes 33:825–831

    PubMed  CAS  Google Scholar 

  15. Dixit PK, Ekstrom RA (1980) Decreased breaking strength of diabetic rat bone and its improvement by insulin treatment. Calcif Tissue Int 32:195–199

    Article  PubMed  CAS  Google Scholar 

  16. McNair P (1988) Bone mineral metabolism in human type I (insulin-dependent) diabetes mellitus. Danish Med Bull 35:109–121

    PubMed  CAS  Google Scholar 

  17. Griffiths HF (1985) Diabetic osteopathy. Orthopedics 8:401–406

    Google Scholar 

  18. French CE (1943) The interrelation of calcium and fat utilization. J Nutr 25:17–21

    CAS  Google Scholar 

  19. Calverley CE, Kennedy C (1949) The effect of fat on calcium and phosphorus metabolism in normal growing rats under a normal dietary region. J Nutr 38:165–175

    CAS  PubMed  Google Scholar 

  20. Kane GG (1949) Dietary fat and calcium wastage in old age. J Gerontol 4:185–192

    CAS  PubMed  Google Scholar 

  21. Beadles JR, Mitchell HH, Hamilton TS (1951) The utilization of dietary calcium by growing albino rats fed diet containing lard or cocoa butter. J Nutr 45:399–405

    PubMed  CAS  Google Scholar 

  22. Givens MH (1917) Studies in calcium and magnesium metabolism. III. The effect of fat and fatty acid derivatives. J Biol Chem 31:441–444

    Google Scholar 

  23. Pepper WF, Slinger SL, Motzok I (1955) Effect of animal fat on the calcium and phosphorus requirement of chicks (abstract) Poult Sci 34:1216

    Google Scholar 

  24. White TW, Grainer RB, Baker FH, Stroud JW (1958) Effect of supplemental fat on digestion and the ruminal calcium requirements of sheep. J Anim Sci 17:797–803

    CAS  Google Scholar 

  25. Tadayyon B, Lutwak L (1969) Interrelationship of triglycerides with calcium, magnesium, and phosphorus in the rat. J Nutr 97:246–254

    PubMed  CAS  Google Scholar 

  26. Atteh JO, Leeson S (1983) Effects of dietary fatty acids and calcium levels on performance and mineral metabolism of broiler chickens. Poult Sci 62:2412–2419

    PubMed  CAS  Google Scholar 

  27. Atteh JO, Leeson S (1984) Effects of dietary saturated or unsaturated fatty acids and calcium levels on performance and mineral metabolism of broiler chicks. Poult Sci 63:2252–2260

    PubMed  CAS  Google Scholar 

  28. Boyd OF, Crum CL, Lyman JF (1931) The absorption of calcium soaps and the relation of dietary fat to calcium utilization in the white rat. J Biol Chem 95:29–41

    Google Scholar 

  29. Pelker RR, Friedlaender GE, Markham TC, Panjabi MM, Moen CJ (1984) Effects of freezing and freeze-drying on the biomechanical properties of rat bone. J Orthop Res 1:405–411

    Article  PubMed  CAS  Google Scholar 

  30. Shaw SR, Vailas AC, Grindeland RE, Zernicke RF (1988) Effects of a 1-wk spaceflight on morphological and mechanical properties of growing bone. Am J Physiol 254:R78-R83

    PubMed  CAS  Google Scholar 

  31. Sheehan DC, Hrapchak BB (1980) Theory and practice of histotechnology. C. V. Mosby, St. Louis, pp 89–117

    Google Scholar 

  32. Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36:S19-S24

    Article  PubMed  Google Scholar 

  33. Carter DR (1987) Mechanical loading history and skeletal biology. J Biomech 20:1095–1109

    Article  PubMed  CAS  Google Scholar 

  34. Kream BE, Smith MD, Canalis E, Raisz LG (1985) Characterization of the effect of insulin on collagen synthesis in fetal rat bone. Endocrinology 116:296–302

    Article  PubMed  CAS  Google Scholar 

  35. Littlejohn GO (1985) Insulin and new bone formation in diffuse idiopathic skeletal hyperostosis. Clin Rheumatol 4:294–300

    Article  PubMed  CAS  Google Scholar 

  36. McDoughall EJ (1938) The counteraction by fat of the anticalcifying action of cereals. Biochem J 32:194–202

    Google Scholar 

  37. Knudson A, Floody RJ (1940) Fat as a factor in the healing of rickets with vitamin D. J Nutr 20:317–325

    CAS  Google Scholar 

  38. Jones JH (1940) the influence of fat on calcium and phosphorus metabolism. J Nutr 20:367–376

    CAS  Google Scholar 

  39. Steggerda FR, Mitchell HH (1951) The calcium balance of adult human subjects on high- and low-fat (butter) diets. J Nutr 45:201–211

    PubMed  CAS  Google Scholar 

  40. Singh L, Gunberg D (1970) Quantitative histology of changes with age in rat bone cortex. J Morphol 133:241–252

    Article  Google Scholar 

  41. Wu K, Schubeck KE, Frost HM, Villanueva A (1970) Haversian bone formation rates determined by a new method in mastodon and in human diabetes mellitus and osteoporosis. Calcif Tissue Res 6:204–219

    Article  PubMed  CAS  Google Scholar 

  42. Frost H (1964) Lamellar bone physiology in diabetes mellitus. An introduction. Henry Ford Hosp Med Bull 12:495–497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, KC., Zernicke, R.F., James Barnard, R. et al. Effects of a high fat-sucrose diet on cortical bone morphology and biomechanics. Calcif Tissue Int 47, 308–313 (1990). https://doi.org/10.1007/BF02555914

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555914

Key words

Navigation