Skip to main content
Log in

A bloom of a brown phototrophic sulfur bacterium in lake kinneret: Hydrochemical aspects

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

During a bloom of the brown phototrophic sulfur bacteriumChlorobium phaeobacteroides in Lake Kinneret the decisive hydrochemical parameters, pH, pH2S and pe (p=−log activity) were monitored in situ and related to the phototrophic bacterial bloom. The measured data in dicate a strong influence of the phototrophic bacteria on the metalimnic sulfide concentration and on the prevailing redox conditions. The intensity of theC. phaeobacteroides bloom, which appeared in two distinct peaks, could be related to vertical changes of the thermocline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren T, Hagstrom I (1974) The oxidation rate of sulphide in sea water, Water Res. 8: 395–400

    Article  CAS  Google Scholar 

  2. Baas Becking LG, Kplan IR, Moore D (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials. J Geol 68: 243–284

    Article  CAS  Google Scholar 

  3. Bergstein Ben Dan T, Henis Y, Cavari BZ (1979) Investigations on the photosynthetic sulfur bacteriumChlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Can J Microbiol 25:999–1007

    PubMed  CAS  Google Scholar 

  4. Berman T, Pollingher U (1974) Annual and seasonal variations of phytoplankton, chlorophyll and photosynthesis in Lake Kinneret, Limnol Oceanogr 19:31–54

    Google Scholar 

  5. Berman T, Eppley RW (1974) The measurement of phytoplankton parameters in nature. Sci Progr 61:219–239

    CAS  Google Scholar 

  6. Berner RA (1963) Electrode studies of hydrogen sulfide in marine sediments. Geochem Cosmochem Acta 27:563–575

    Article  CAS  Google Scholar 

  7. Blackburn TH, Kleiber P, Fenchel T (1975) Photosynthetic sulfide oxidation in marine sediments. Oikos 26:103–108

    Article  CAS  Google Scholar 

  8. Boulegue J, Michard G (1979) Sulfur speciations and redox processes in reducing environments. In: Jenne EA (ed) Chemical Modelling in Aqueous Systems. ACS Symp Ser 93: 25–50

  9. Caldwell, DE, Tiedje JM (1975) The structure of anaerobic bacterial communities in the hypolimnion of several Michigan lakes. Can J Microbiol 21:362–385

    Article  PubMed  CAS  Google Scholar 

  10. Dubinsky Z, Berman T (1979) Seasonal changes in the spectral composition of downwelling irradiance in Lake Kinneret (Israel). Limnol Oceanogr 24:652–663

    CAS  Google Scholar 

  11. Eckert W, Frevert T (1984) In situ monitoring of hydrogen sulfide in water and sediment of Lake Kinneret, Israel, 4th Symp on Ion-Selective Electrodes, Matrafured, Hungary, pp 359–371

  12. Eckert W, Frevert T, Bergstein T, Cavari BZ (1986) Competitive development ofthiocapsa roseopersicina andChlorobium phaeobacteroides in Lake Kinneret, Can J Microbiol 32:917–921

    CAS  Google Scholar 

  13. Eckert W, Frevert T, Trüper HG (1990) A new liquid-junction free probe for thein situ determination of pH, pH2S and redox values. Water Res.: in press

  14. Frevert T, Galster H (1978) Schnelle und einfache Methode zur in situ Bestimmung von Schwefelwasserstoff in Gewässern und Sedimenten, Swiss J Hydrol 40:199–208

    Article  CAS  Google Scholar 

  15. Frevert T (1980) Determination of hydrogen sulfide in saline solutions. Swiss J Hydrol 42: 255–268

    Article  CAS  Google Scholar 

  16. Frevert T (1983) Hydrochemisches Grundpraktikum, Birkhäuser Verlag, Basel

    Google Scholar 

  17. Frevert T (1984) Can the redox conditions in natural waters be predicted by a single parameter? (with a comment by Stumm W). Swiss J Hydrol 46:269–280

    Article  Google Scholar 

  18. Gorlenko WM (1977) Die phototrophen Bakterien in den stratifizierten Seen und ihre Ökologie. In: Daubner (ed), 2nd Internat Hydro-Microbiol Symp, Bratislava, pp 91–112

  19. Guerrero R, Pedros-Alio C, Esteve I, Mas J (1982) Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. Acta Academiae Aboensis Ser B 47:125–151

    Google Scholar 

  20. Klein B, Sournia A (1987) A daily study of the diatom spring bloom at Roscoff (France) in 1985. II. Phytoplankton pigment composition studied by HPLC analysis. Mar Ecol Prog Ser 37:265–275

    CAS  Google Scholar 

  21. Mantoura RFC, Llewellyn CA (1983) The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse phase highperformance liquid chromatography. Anal Chim Acta 151: 297–314

    Article  CAS  Google Scholar 

  22. Parkin TB, Brock TD (1980) Photosynthetic bacterial production in lakes: The effect of light intensity. Limnol Oceanogr 25:711–718

    Article  Google Scholar 

  23. Peiffer S, Frevert T (1987) Potentiometric determination of heavy metal sulphide solubilities using a pH2S(glass/Ag,Ag2S) electrode cell, Analyst 112:951–954

    Article  CAS  Google Scholar 

  24. Pfennig N (1965) Anreicherungskulturen fur rote und grüne Schwefelbakterien. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1:179–189

    Google Scholar 

  25. Pfennig N (1967) Photosynthetic bacteria. Ann Rev Microbiol 21:285–324

    Article  CAS  Google Scholar 

  26. Pfennig N (1975) The phototrophic bacteria and their role in the sulfur cycle. Plant Soil 43: 9–14

    Article  Google Scholar 

  27. Seruya C (ed) (1978) Lake Kinneret, Dr. W Junk Publisher, Amsterdam

    Google Scholar 

  28. Sorokin YI (1970) Interrelation between sulfur and carbon turnover in meromictic lakes, Arch Hydrobiol 66:391–446

    Google Scholar 

  29. Stal LJ, Van Gemerden H, Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Meth 2:295–306

    Article  CAS  Google Scholar 

  30. Steenbergen CLM, Korthals HJ, Van Nes M (1987) Ecological observations on phototrophic sulfur bacteria and the role of these bacteria in the sulfur cycle of monomictic Lake Vechten (The Netherlands). Acta Academiae Aboensis 47:97–115

    Google Scholar 

  31. Stumm W (1981) Aquatic chemistry, Wiley, New York

    Google Scholar 

  32. Takahashi M, Ichimura S (1970) Photosynthetic properties and growth of photosynthetic bacteria in lakes. Limnol Oceanogr 15:929–944

    CAS  Google Scholar 

  33. Trüper HG, Genovese S (1968) Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro Sicily. Limnol Oceanogr 13:225–232

    Google Scholar 

  34. Trüper HG (1978) Sulfur metabolism. In: Clayton RK, Systron WR (eds) The photosynthetic bacteria, Plenum Press, New York, pp 677–690

    Google Scholar 

  35. Trüper HG (1981) Photolithotrophic sulfur oxidation. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer Berlin, pp 199–211

    Google Scholar 

  36. Yacobi YZ, Eckert W, Trüper HG, Berman T (1990) High performance liquid chromatography detection of phototrophic bacterial pigments in aquatic environments. Microbial Ecol 19: 127–136

    Article  CAS  Google Scholar 

  37. Zapata M, Ayala AM, Franco JM, Garrido JL (1987) Separation of chlorophylls and their degradation products in marine phytoplankton by reverse-phase high-performance liquid chromatography Chromatographia 23:26–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, W., Yacobi, Y.Z. & Trüper, H.G. A bloom of a brown phototrophic sulfur bacterium in lake kinneret: Hydrochemical aspects. Microb Ecol 20, 273–282 (1990). https://doi.org/10.1007/BF02543882

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02543882

Keywords

Navigation