Skip to main content
Log in

Natural water brownification as a shift in the phytoplankton community in a deep hard water lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effect of long-term changes in total precipitation on physical and chemical parameters of the water and the structure of phytoplankton community during a year were studied in a deep hard water lake. With respect to total precipitation, two different periods were distinguished: dry and wet. In the wet period, the water level rose and caused an increase in the water colour and a decrease in the electrolytic conductivity and concentration of nutrients. These changes were reflected in the composition and amount of phytoplankton. Certain phytoplankton groups, e.g. Cryptophyceae, Dinophyceae, Chrysophyceae, Bacillariophyceae and Chlorophyta/Charophyta, were positively affected by the environmental changes; instead, these effects were not observed in Cyanobacteria and Euglenophyta. The development of flagellates, such as Cryptomonas curvata, Plagioselmis nannoplanctica and Ceratium hirundinella, was enhanced during the wet period, whereas the dry period favoured non-flagellates, such as Planktothrix agardhii, Planktothrix rubescens and Limnothrix planctonica. Hence, the long-term variability in total precipitation can be a switch from non-flagellate- to flagellate-dominated phytoplankton in lakes. Moreover, a short time of ice cover duration in winter linked with the wet period promoted phytoplankton groups typical for spring and autumn, e.g. Cryptophyceae and Bacillariophyceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arvola, L., 1986. Spring phytoplankton of 54 small lakes in southern Finland. Hydrobiologia 137: 125–134.

    Article  Google Scholar 

  • Bergström, A.-K., M. Jansson, S. Drakare & P. Blomqvist, 2003. Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents. Freshwater Biology 48: 868–877.

    Article  Google Scholar 

  • Bociąg, K., 2000. Impact of humic substances on the structure of the vegetation of hardwater lakes. In Jackowiak, B. & W. Żukowski (eds), Mechanisms of Anthropogenic Changes of the Plant Cover. Bogucki Wyd. Nauk, Poznań: 161–168.

    Google Scholar 

  • Brandstetter, A., R. S. Sletten, A. Mentler & W. W. Wenzel, 1996. Estimating dissolved organic carbon in natural waters by UV absorbance (254 nm). Zeitschrift für Pflanzenernährung und Bodenkunde 159: 605–607.

    Article  CAS  Google Scholar 

  • Clegg, M. R., S. C. Maberly & R. I. Jones, 2007. Behavioral response as a predictor of seasonal depth distribution and vertical niche separation in freshwater phytoplanktonic flagellates. Limnology and Oceanography 52: 441–455.

    Article  CAS  Google Scholar 

  • Cronberg, G., G. Lindmark & S. Björk, 1988. Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lake – an effect of acidification? Hydrobiologia 161: 217–236.

    Article  CAS  Google Scholar 

  • Chmiel, S., 2009. Hydrochemical evaluation of dystrophy of the water bodies in the Łęczna and Włodawa area in the years 2000–2008. Limnological Review 9: 153–158.

    Google Scholar 

  • de Haan, H. R. & T. de Boer, 1986. Geochemical aspects of aqueous iron, phosphorus and dissolved organic carbon in the humic Lake Tjeukemeer, The Netherlands. Freshwater Biology 16: 661–672.

    Article  Google Scholar 

  • de Tezanos Pinto, P. & E. Litchman, 2010. Eco-physiological responses of nitrogen-fixing cyanobacteria to light. Hydrobiologia 639: 63–68.

    Article  Google Scholar 

  • de Haan, H. R., R. I. Jones & K. Salonen, 1990. Abiotic transformations of iron and phosphates in humic lake water, revealed by double isotope labelling and gel filtration. Limnology and Oceanography 35: 491–497.

    Article  Google Scholar 

  • Ejankowski, W. & T. Lenard, 2015. Climate driven changes in the submerged macrophyte and phytoplankton community in a hard water lake. Limnologica 52: 59–66.

    Article  CAS  Google Scholar 

  • Fijałkowski, D., 1959. Plant associations of lakes situated between Łęczna and Włodawa and of peat-bogs adjacent to these lakes. Annales UMCS, Sectio B 14: 131–204.

    Google Scholar 

  • Gervais, F., 1997. Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake. Journal of Plankton Research 19: 533–550.

    Article  Google Scholar 

  • Granéli, E., P. Carlsson, P. Olsson, B. Sundstrom, W. Granéli & O. Lindahl, 1989. From anoxia to fish poisoning: the last ten years of phytoplankton blooms in Swedish marine waters. In Cosper, E. M., B. Bricelj & E. J. Carpenter (eds), Novel Phytoplankton Blooms. Springer, New York: 407–427.

    Chapter  Google Scholar 

  • Hansen, K., 1962. Dystrophic lake type. Hydrobiologia 19: 183–190.

    Article  Google Scholar 

  • Hermanowicz, W., J. Dojlido, W. Dożańska, B. Koziorowski & J. Zerbe, 1999. Fizyczno-chemiczne badanie wody i ścieków. Wyd. Arkady, Warszawa.

    Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hongve, D., G. Riise & J. F. Kristiansen, 2004. Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water – a result of increased precipitation? Aquatic Sciences 66: 231–238.

    Article  CAS  Google Scholar 

  • Irfanullah, H. M., 2009. On the role of forested catchment in acid lake limnology. Turkish Journal of Fisheries and Aquatic Sciences 9: 227–230.

    Google Scholar 

  • Jansson, M., 1998. Nutrient limitation and bacteria – phytoplankton interactions in humic lakes. In Hessen, D. O. & L. J. Tranvik (eds), Aquatic humic substances ecology and biogeochemistry. Ecological Studies 133: 177–195.

  • Jones, R. I., 1992. The influence of humic substances on lacustrine planktonic food chains. In Salonen, K., T. Kairesalo & R. I. Jones (eds), Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System Regulator. Hydrobiologia 229: 73–91.

  • Jones, R. I., 1998. Phytoplankton, primary production and nutrient cycling. In Hessen, D. O. & L. J. Tranvik (eds), Aquatic humic substances ecology and biogeochemistry. Ecological Studies 133: 145–175.

    Article  CAS  Google Scholar 

  • Keskitalo, J., K. Salonen & A. L. Holopainen, 1998. Long-term fluctuations in environmental conditions, plankton and macrophytes in a humic lake, Valkea-Kotinen. Boreal Environment Research 3: 251–262.

    Google Scholar 

  • Kaszewski, B. M., K. Siwek, A. F. Gluza & M. Siłuch, 2009. Changes of the selected climatic components in the “West Polesie” Biosphere Reserve during 1951–2006 period. In Chmielewski, T. J. & C. Słotwiński (eds), Nature and Landscape Monitoring System in the West Polesie Region. Wyd. PZN, Warszawa: 138–152.

    Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge Univ. Press, Cambridge.

    Book  Google Scholar 

  • Klimaszyk, P., P. Rzymski, R. Piotrowicz & T. Joniak, 2015. Contribution of surface runoff from forested areas to the chemistry of a through-flow lake. Environmental Earth Sciences 73: 3963–3973.

    Article  CAS  Google Scholar 

  • Klug, J. L. & K. L. Cottingham, 2001. Interactions among environmental drivers: Community responses to changing nutrients and dissolved organic carbon. Ecology 82: 3390–3403.

    Article  Google Scholar 

  • Kondracki, J., 2002. Geografia regionalna Polski. Wyd. Nauk. PWN, Warszawa.

    Google Scholar 

  • Kovach, W. L., 1999. MVSP – A Multivariate Statistical Package for Windows, ver. 3.1. Kovach Computing Services, Pentraeth.

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Lean, D., 1998. Attenuation of solar radiation in humic waters. In Hessen, D. O. & L. J. Tranvik (eds), Aquatic humic substances. Heidelberg, Springer-Verlag, Berlin, Ecology and Biogeochemistry: 109–124.

    Chapter  Google Scholar 

  • Lenard, T., W. Ejankowski, W. Wojciechowska & M. Solis, 2014. Cyanophytes and chlorophytes versus raphidophytes in humic lakes with different catchment basins. Biologia 69: 735–741.

    Article  Google Scholar 

  • Lepistö, L. & M. Saura, 1998. Effects of forest fertilization on phytoplankton in boreal brown-water lake. Boreal Environment Research 3: 33–43.

    Google Scholar 

  • Livingstone D.M., R. Adrian, T. Blenckner, G. Georg & G.A. Weyhenmeyer, 2010. Lake ice phenology. In D. G. George (ed.), The Impact of Climate Change on European Lakes. Aquatic Ecology 4: 51–61.

  • Longhi, M. L. & B. E. Beisner, 2009. Environmental factors controlling the vertical distribution of phytoplankton in lakes. Journal of Plankton Research 31: 1195–1207.

    Article  CAS  Google Scholar 

  • Michalczyk, Z., S. Chmiel & M. Turczyński, 2011. Lake water stage dynamics in the Łęczna-Włodawa Lake District in 1991-2010. Limnological Review 11: 113–122.

    Article  Google Scholar 

  • Mormul, R. P., J. Ahlgren, M. K. Ekvall, L.-A. Hansson & Ch Brönmark, 2012. Water brownification may increase the invasibility of a submerged non-native macrophyte. Biological Invasions 10: 2091–2099.

    Article  Google Scholar 

  • Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408(409): 277–283.

    Article  Google Scholar 

  • Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climatic change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506–509: 257–263.

    Article  Google Scholar 

  • Nush, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für HydrobiologieBeiheft Ergebnisse der Limnologie 14: 14–36.

  • Nürnberg, G. K. & M. Show, 1999. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382: 97–112.

    Article  Google Scholar 

  • Oberhaus, L., J. F. Briand, C. Leboulanger, S. Jacquet & J. F. Humbert, 2007. Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens. Journal of Phycology 43: 1191–1199.

    Article  CAS  Google Scholar 

  • Pace, M. L. & J. J. Cole, 2002. Synchronous variation of dissolved organic carbon and color in lakes. Limnology and Oceanography 47: 333–342.

    Article  CAS  Google Scholar 

  • Padisák, J., 1998. Sudden and gradual responses of phytoplankton to global climatic change: case studies from two large, shallow lakes (Balaton, Hungary; Neusiedlersee, Austria/Hungary). In George, D. G., J. G. Jones, P. Puncochar, C. S. Reynolds & D. W. Sutcliffe (eds), Management of lakes and reservoirs during global change. Kluwer Academic Publications, Dordrecht, Boston, London: 111–125.

    Chapter  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Pagenkopf, G. K. & C. Whitworth, 1981. Precipitation of metal-humate complexes. Journal of Inorganic and Nuclear Chemistry 43: 1219–1222.

    Article  CAS  Google Scholar 

  • Pęczuła, W. & A. Szczurowska, 2013. Long-term changes in phytoplankton in a humic lake in response to the water level rising: the effects of beaver engineering on a freshwater ecosystem. Knowledge and Management of Aquatic Ecosystems 410: 06.

    Google Scholar 

  • Poniewozik, M., W. Wojciechowska & M. Solis, 2011. Dystrophy or eutrophy: phytoplankton and physicochemical parameters in the functioning of humic lakes. Oceanological and Hydrobiological Studies 40: 22–29.

    Article  CAS  Google Scholar 

  • Reynolds, C., 2006. The Ecology of Phytoplankton. Ecology, Biodiversity and Conservation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rengefors, K., C. Pålsson, L.-A. Hansson & L. Heiberg, 2008. Cell lysis of competitors and osmotrophy enhance growth of the bloom-forming alga Gonyostomum semen. Aquatic Microbial Ecology 51: 87–96.

    Article  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry. 3. W.H. Freeman and Company, New York.

  • Steinberg, Ch E W, S. Kamara, V Yu Prokhotskaya, L. Manusadžianas, T. Karasyova, M. A. Timofeyev, J. Zhang, A. Paul, T. Meinelt, V. F. Farjalla, A. Y. O. Matsuo, B. K. Burnison & R. Menzel, 2006. Dissolved humic substances – ecological driving forces from the individual to the ecosystem level? Freshwater Biology 51: 1189–1210.

    Article  CAS  Google Scholar 

  • Sugier, P., 2008. Characteristics of Lake Rogóźno macrophytes and their role in preservation of biodiversity. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego 5: 138–144.

    Google Scholar 

  • Trigal, C., S. Hallstan, K. S. L. Johansson & R. K. Johnson, 2013. Factors affecting occurrence and bloom formation of the nuisance flagellate Gonyostomum semen in boreal lakes. Harmful Algae 27: 60–67.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervolkommnung der quantitativen Planktonmethodik. Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie 9: 1–38.

    Google Scholar 

  • Valeriano-Riveros, M. E., G. Vilaclara, F. S. Castillo-Sandoval & M. Merino-Ibarra, 2014. Phytoplankton composition changes during water level fluctuations in a high-altitude, tropical reservoir. Inland Waters 4: 337–348.

    Article  Google Scholar 

  • van den Besselaar, E. J. M., A. M. G. Klein Tank & T. A. Buishand, 2012. Trends in European precipitation extremes over 1951–2010. International Journal of Climatology 33: 2682–2689.

    Google Scholar 

  • Vassiljev, J., 1998. The simulated response of lakes to changes in annual and seasonal precipitation: implication for Holocene lake-level changes in northern Europe. Climate Dynamics 14: 791–801.

    Article  Google Scholar 

  • Vuorenmaa, J., M. Forsius & J. Mannio, 2006. Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. Science of the Total Environment 365: 47–65.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Q. Cai, Y. Xu, L. Kong, L. Tan & M. Zhang, 2011. Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay. Aquatic Ecology 45: 197–212.

    Article  Google Scholar 

  • Wetzel, R., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo.

    Google Scholar 

  • Weyhenmeyer, G. A., E. Willén & L. Sonesten, 2004. Effects of an extreme precipitation event on water chemistry and phytoplankton in the Swedish Lake Mälaren. Boreal Environment Research 9: 409–420.

    CAS  Google Scholar 

  • Whittington, J., S. Bradford & L. O. Roderick, 2000. Growth of Ceratium hirundinella in a subtropical Australian reservoir: the role of vertical migration. Journal of Plankton Research 22: 1025–1045.

    Article  Google Scholar 

  • Willén, E., 2003. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia 502: 315–324.

    Article  Google Scholar 

  • Zolina, O., C. Simmer, K. Belyaev, A. Kapala & S. K. Gulev, 2009. Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. Journal of Hydrometeorology 10: 701–716.

    Article  Google Scholar 

  • Zalocar de Domitrovic, Y., 2003. Effect of fluctuations in water level on phytoplankton development in three lakes of the Paraná river floodplain (Argentina). Hydrobiologia 510: 175–193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Lenard.

Additional information

Handling editor: Judit Padisák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenard, T., Ejankowski, W. Natural water brownification as a shift in the phytoplankton community in a deep hard water lake. Hydrobiologia 787, 153–166 (2017). https://doi.org/10.1007/s10750-016-2954-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2954-9

Keywords

Navigation