Skip to main content
Log in

A calorimetric, NMR and X-ray diffraction study of the melting behavior of tripalmitin and tristearin and their mixing behavior with triolein

  • Technical
  • Published:
Journal of the American Oil Chemists’ Society

Abstract

X-ray diffraction, differential scanning calorimetry and NMR have been used to give information on the molecular order and melting of tripalmitin and tristearin crystals. They also have been used to study the melting and solubility of these pure triglycerides when mixed with triolein. From these studies we propose demixing in the liquid state and observe modification of the crystallization kinetics of these saturated triglycerides such that the highest melting (β-polymorphic) form is observed within a minute at 298K for cooling rates up to 120K/min. In the mixtures the long d-spacing, corresponding to the distance between layers in the crystals, was observed to be approximately 0.5 nm greater after cooling in excess of 60K per min than for close packed layers in the β form crystals. A study carried out after rapid cooling showed that two processes occurred. Initially, the α polymorphic form is produced; this transformed to the β-like crystals in a matter of a few minutes. There is then a much more gradual decrease in the long d-spacing as a slow annealing into the tightly packed β polymorphic form occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarkson, C.E., and T. Malkin, J. Chem. Soc. 666 (1934).

  2. Larsson, K., Chem. Scr. 1:21 (1971).

    CAS  Google Scholar 

  3. Dafler, J.R., JAOCS 54:249 (1977).

    CAS  Google Scholar 

  4. Hvolby, A., JAOCS 51:50 (1974).

    CAS  Google Scholar 

  5. Lutton, E.S., and A.J. Fehl, Lipids 5:90 (1970).

    Article  CAS  Google Scholar 

  6. Larsson, K., Ark Kemi 23:1 (1965).

    Google Scholar 

  7. Hagemann, J.W., W.H. Tallent and K.E. Kolb, JAOCS 49:118 (1972).

    CAS  Google Scholar 

  8. Hagemann, J.W., and J.A. Rothfus, JAOCS 60:1123 (1983).

    CAS  Google Scholar 

  9. Hale, J.E., and F. Schroeder, Lipids 16:805 (1981).

    Article  CAS  Google Scholar 

  10. Lutton, E.S., JAOCS 32:49 (1955).

    CAS  Google Scholar 

  11. Hannewijk, J., Chemisch. Weekblad 60:309 (1964).

    CAS  Google Scholar 

  12. Privalov, P.L., Pure & Appl. Chem. 52:479 (1980).

    CAS  Google Scholar 

  13. Hampson, F.W., and H.L. Rothbat, JAOCS 46:143 (1969).

    CAS  Google Scholar 

  14. Charbonnet, G.H., and W.S. Singleton, JAOCS 24:140 (1947).

    CAS  Google Scholar 

  15. Pines, A., M.C. Gibby and J.S. Waugh, J. Chem. Phys. 59:569 (1973).

    Article  CAS  Google Scholar 

  16. Schaefer, J., and E.O. Stejskal, JACS 98:1031 (1976).

    Article  CAS  Google Scholar 

  17. Rossell, J.B., Advan. Lipid Res. 5:353 (1967).

    CAS  Google Scholar 

  18. Chapman, D., The Structure of Lipids, Methuem & Co. Ltd., London, 1965, pp. 262–280.

    Google Scholar 

  19. Pfeffer, P.E., F.E. Luddy, J. Unruh and J.N. Shoolery, JAOCS 54:380 (1977).

    CAS  Google Scholar 

  20. Farrar, T.C., and E.D. Becker, Pulse and Fourier Transform NMR, Acad. Press, New York, NY, 1971, p. 20.

    Google Scholar 

  21. O’Neill, M.J., Analytical Chem. 36:1238 (1964).

    Article  CAS  Google Scholar 

  22. Kawamura, K., JAOCS 56:753 (1979).

    CAS  Google Scholar 

  23. Yoncoskie, R.A., JAOCS 44:446 (1967).

    CAS  Google Scholar 

  24. Hoerr, C.W., and F.R. Paulicka, JAOCS 45:793 (1968).

    CAS  Google Scholar 

  25. Hartman, S.R., and E.L. Hahn, Phys. Rev. 128:2042 (1962).

    Article  Google Scholar 

  26. Haw, J.F., and G.E. Macier, Anal. Chem. 55:1262 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Norton, I.T., Lee-Tuffnell, C.D., Ablett, S. et al. A calorimetric, NMR and X-ray diffraction study of the melting behavior of tripalmitin and tristearin and their mixing behavior with triolein. J Am Oil Chem Soc 62, 1237–1244 (1985). https://doi.org/10.1007/BF02541834

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02541834

Keywords

Navigation