Skip to main content
Log in

Background aspects of lake restoration: water balance, heavy metal content, phosphorus homeostasis

  • Published:
Swiss journal of hydrology Aims and scope Submit manuscript

Abstract

Perturbations of the lake water balance, inputs of heavy metals to lakes, and intensifying fertilization of lakes through input and accumulation of phosphorus—these three classes of phenomena are among the more important background processes in lake restoration. Lake restoration consists of a series of measures animed at producing a homeostatic response of a lake system to external perturbations. The success of its implementation is affected by the morphometric and edaphic parameters of different types of lakes. The relationship between the volume (V) and mean-depth\((\bar z)\) of fresh-water lakes indicates a trend of\(V \propto \bar z^3 \). Glacial lakes occuring on or near crystalline shields have relatively shallow depths, whereas volcanic lakes, rift valley and deep valley lakes have relatively greater depths for the same volume. For saline lakes (21 lakes, V>1 km3) that undergo cycles of expansion and shrinkage, the V to\(\bar z\) relationship is closer to power 1. Water residence times (τ) of small and big fresh-water lakes show a trend of τ approximately linear in\(\bar z\) or τ∝V0.3. Volcanic lakes and Maare have longer residence times in comparison to other lakes of similar volumes. For the major inorganic chemical species and heavy metals, the regulatory upper-limit concentrations in drinking water in the USA and EEC are from several times to more than 100 times higher than their concentrations in a global mean river water. Only three elements (Fe, P, and Al) occur in river water at concentrations approaching such upper-limit recommendations. Rates of accumulation of phosphorus in lake water and sediments, computed as the difference between input and ouflow removal rates for 23 fresh-water lakes, are generally lower for lakes of longer water residence time. The rate of accumulation is a measure of homeostatic response of the lake system to input load: it is equivalent to the rate of all the removal processes needed to maintain phosphorus concentration in lake water at a steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adriano, D.C.: Trace Elements In The Terrestrial Environment, Springer-Verlag, New York 1986.

    Google Scholar 

  2. Atkinson, M.J., and Smith, S.V.: C:N:P Ratios of Benthic Marine Plants. Limnol. Oceanogr.28 (3), 568–574 (1983).

    CAS  Google Scholar 

  3. Barry, R.G.: Snow Cover, Sea Ice, and Permafrost. Rept. Workshop on Glaciers, Ice Sheets and Sea Level: Effect of A CO2-Induced Climatic Change, p. 241–247. US DOE/ER/60235-1 (1985).

  4. Beeton, A.M.: Chemical Characteristics Of The Laurentian Great Lakes. Buffalo Soc. Nat. Sci. Bull.25 (2), 1–20 (1971).

    CAS  Google Scholar 

  5. Bowen, H.J.M.: Environmental Chemistry of the Elements. Academic Press, New York 1979.

    Google Scholar 

  6. Bruko, C.: Harbors Falling Prey To Rising Lake. Chicago Tribune, Sec. 6, p. 1, 8 (30 November 1986).

  7. Cahill, R.A.: Geochemistry of Recent Lake Michigan Sediments. Illinois State Geol. Surv. Circ.517, 1–94 (1981).

    Google Scholar 

  8. Collier, R.W., and Edmond, J.M.: Plankton Compositions and Trace Element, Fluxes from the Surface Ocean. In: Wong, C.S., and others, C.S. (eds): Trace Metals in Sea Water, p. 789–808, Plenum Press, New York 1983.

    Google Scholar 

  9. Dawson, G.W.: The Chemical Toxicity Of Elements. Battelle Pacific Northwest Laboratories, Richland, Wa, BNWL-1815 (1974).

    Google Scholar 

  10. de Bernardi, R.: Eutrophication Problems in Italian Lakes, Proc. Shiga Conf.’84, 70–72. Shiga Prefect. Govt. (1985).

  11. EEC: Richtlinie des Rates vom 15. Juli 1980 über die Qualität von Wasser für den menschlichen Gebrauch. Amtsblatt Europ. Gemeinsch. Nr. L229, 11–20 (1980).

    Google Scholar 

  12. EPA: Water Quality Criteria 1972. Rep. Nat. Acad. Sci.. Nat. Tech. Inf. Serv., Springfield, Va. (1972).

    Google Scholar 

  13. EPA: Quality Criteria For Water, p. 1–256, Nat. Tech. Inf. Serv., Springfield, Va. (1977).

    Google Scholar 

  14. EPA: National Interim Primary Drinking Water Regulations, Federal Register, 40 CFR 141,11 (11 March 1980).

  15. EPA: National Secondary Drinking Water Regulations, Federal Register, 40 CFR 143.43,44 (140) (19 July 1979).

  16. Emerson, S.M., and Widmer, G.: Early Diagenesis in Anaerobic Lake Sediments: II. Thermodynamic and Kinetic Factors Controlling the Formation of Iron Phosphate. Geochim. Cosmochim. Acta42, 1307–1316 (1978).

    Article  CAS  Google Scholar 

  17. Fricker, H.J.: OECD Eutrophication Programme, Regional Project Alpine Lakes. Bundesamt für Umweltschutz, Bern 1980.

    Google Scholar 

  18. Gächter, R. and Imboden, D.M.: Lake Restoration. In: Stumm, W. (ed.): Chemical Processes in Lakes, p. 363–388, Wiley, New York 1985.

    Google Scholar 

  19. Gächter, R., and Stumm, W.: Gutachten über die Sanierungsmöglichkeiten des Sempachersees. EAWAG, int. Bericht (1979).

  20. Herdendorf, C.E.: Large Lakes of the World. J. Great Lakes Res.8 (3), 379–412 (1982).

    Google Scholar 

  21. Imboden, D.M., and Lerman, A.: Chemical Models of Lakes. In: Lerman, A. (ed.): Lakes: Chemistry, Geology, Physics, p. 341–356. Springer-Verlag, New York 1978.

    Google Scholar 

  22. Imboden, D.M., and Schwarzenbach, R.P.: Spatial and Temporal Distribution of Substances in Lakes: Modeling Concepts. In: Stumm, W. (Ed.): Chemical Processes in Lakes, p. 1–30. Wiley, New York 1985.

    Google Scholar 

  23. Iten, O.: Bolivien im Banne der Gewalt von Natur und Wirtschaft. Neue Zürcher Zeitung266, 77–79 (1986).

    Google Scholar 

  24. Jaquet, J.M.: Bilan et modèle d’entrées-sorties du phosphore total dans le Léman. Ann. Limnol.21 (3), 177–189 (1985).

    Article  Google Scholar 

  25. Johnson, A.B., Jr., and Francis, B.: Durability of Metals from Archaeological Objects, Metal Meteorites, and Native Metals. Battelle Pacific Northwest Laboratories, Richland, Wash. PNL-3198 (1980).

  26. Jones B.F., and Bowser, C.J.: The Mineralogy and Related Chemistry of Lake Sediments. In: Lerman, A. (ed.): Lakes: Chemistry, Geology, Physics, p. 179–236. Springer-Verlag, New York 1978.

    Google Scholar 

  27. Kramer, J.R.: Equilibrium Models and Composition of the Great Lakes. Adv. Chem. Ser.67, 243–254 (1967).

    Article  Google Scholar 

  28. LAWA (Länderarbeitgemeinschaft Wasser): Seen in der Bundesrepublik Deutschland, p. 1–190. Woeste Druck Verlag, Essen 1985.

    Google Scholar 

  29. LBRI (Lake Biwa Research Institute): Data Book of World Lakes, p. 1–513. LECS’84, Otsu 1984.

  30. Lerman, A., and Brunskill, G.J.: Migration of Major Constituents from Lake Sediments to Lake Water and its Bearing on Lake Water Composition. Limnol. Oceanogr.16 (6), 880–890 (1971).

    Article  CAS  Google Scholar 

  31. Li, Y.-H.: Why are the Chemical Compositions of Living Organisms so Similar? Schweiz Z. Hydrol.46 (2), 177–184 (1984).

    Google Scholar 

  32. Lowenstam, H.A.: Minerals Formed by Organisms. Science211, 1126–1131 (1980).

    Article  Google Scholar 

  33. Martin, J.M., and Meybeck, M.: Elemental Mass-Balance of Material Carried by Major World Rivers. Mar. Chem.7, 173–206 (1979).

    Article  CAS  Google Scholar 

  34. Martin, J.M., and Whitfield, M.: The Significance of the River Input of Chemical Elements to the Ocean. In: Wong, C.S., and others (eds.): Trace Metals in Sea Water, p. 265–296. Plenum, New York 1983.

    Google Scholar 

  35. Meybeck, M.: Concentrations des eaux fluviales en éléments majeurs et apports en solution aux océans. Rev. Geol. Dyn. Geogr. Phys.21 (3), 215–246 (1979).

    CAS  Google Scholar 

  36. Moore, C., and Boström, K.: The Elemental Composition of Lower Marine Organisms. Chem. Geol.23, 1–9 (1978).

    Article  CAS  Google Scholar 

  37. Morel, F.M.M., and Hudson, R.J.M. The Geobiological Cycle of Trace Elements in Aquatic Systems: Redfield Revisited. In: Stumm, W. (ed.): Chemical Processes in Lakes, p. 251–282, Wiley, New York 1985.

    Google Scholar 

  38. Nace, R.L.: Water Resources: A Global Problem with Local Roots. Env. Sci. Tech.1, 550–560 (1967).

    Article  Google Scholar 

  39. Rast, W., and Lee, G.F.: Summary Analysis of the North American OECD Eutrophication Project: Nutrient Loading-Lake Response Relationships and Trophic State Indices. Nat. Tech. Inf. Serv., Springfield, Va. (1978).

    Google Scholar 

  40. Schindler, D.W.: The Coupling of Elemental Cycles by Organisms: Evidence from Whole-Lake Chemical Perturbations. In: Stumm, W. (ed.) Chemical Processes in Lakes, p. 225–250, Wiley, New York 1985.

    Google Scholar 

  41. Serruya, C., and Pollingher, U.: Lakes of the Warm Belt. Cambridge Univ. Press (1983).

  42. Sigg, L., Sturm, M., and Kistler, D.: Vertical Transport of Heavy Metals by Settling Particles in Lake Zurich, Limnol. Oceanogr. (in press, 1987).

  43. Snodgrass, W.J., and O’Melia, C.R.: Predictive Models for Phosphorus in Lakes, Env. Sci. Tech.9, 937–944 (1975).

    Article  CAS  Google Scholar 

  44. Stumm, W., and Baccini, P.: Man-made Chemical Perturbation of Lakes. In: Lerman, A. (ed.): Lakes: Chemistry, Geology, Physics, p. 91–126. Springer-Verlag, New York 1978.

    Google Scholar 

  45. Thomas, R.L.: Sediments of the North American Great Lakes. Int. Verein. Limnol. Verh.21, 1666–1680 (1981).

    CAS  Google Scholar 

  46. Vollenweider, R.A.: Möglichkeiten und Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch. Hydrobiol.66(1), 1–30 (1969).

    Google Scholar 

  47. Vollenweider, R.A.: Elemental and Biochemical Composition of Plankton Biomass. Arch. Hydrobiol.105, 11–29 (1985).

    CAS  Google Scholar 

  48. Vollenweider, R.A.: Personal communication (1986).

  49. Weiler, R.R.: Chemistry of the North American Great Lakes. Int. Verein. Limnol. Verh.21, 1681–1694 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerman, A., Hull, A.B. Background aspects of lake restoration: water balance, heavy metal content, phosphorus homeostasis. Schweiz. Z. Hydrol 49, 148–169 (1987). https://doi.org/10.1007/BF02538500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02538500

Keywords

Navigation