Skip to main content
Log in

The glycosylceramides of the nematodeCaenorhabditis elegans contain an unusual, branched-chain sphingoid base

  • Article
  • Published:
Lipids

Abstract

Caenorhabditis elegans was cultured in semi-defined medium containing yeast extract, soy peptone, glucose, hemoglobin, Tween 80, and sitosterol. Monoglycosylceramides were chromatographically purified from nematode extracts. Their structures were elucidated with mass spectrometry, nuclear magnetic resonance spectroscopy, and analysis of methanolysis products of the parent cerebrosides. The glycosylceramides were unusual in that the only long-chain sphingoid base detected was aniso-branched compound with a C-4 double bond (i.e., 15-methyl-2-aminohexadec-4-en-1,3-diol). Glucose was the only sugar moiety detected. The fatty acids consisted of a series of primarily straint-chain, saturated, 2-hydroxylated C20–C26 acids; someiso-branched analogs also occurred. The sphingomyelins ofC. elegans were also hydrolyzed, and the sameiso-branched C17 compound was the only sphingoid base detected. This is the first structural analysis of a nematode glycosphingolipid and the first report of an organism in which the long-chain sphingoid bases are entirelyiso-branched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CI/MS:

chemical ionization/mass spectroscopy

EI/MS:

electron impact/mass spectrometry

EtOH:

ethanol

FAME:

fatty acid methyl ester

GalCer:

galactosylceramide

GC/MS:

gas chromatography/mass spectrometry

GlcCer:

glucosylceramide

GLC:

gas-liquid chromatography

HPLC:

high-performance liquid chromatography

LCB:

long-chain sphingoid base

MeOH:

methanol

TLC:

thin-layer chromatography

TMS:

trimethylsilyl

References

  1. Merrill, A.H., Jr., Hannun, Y.A., and Bell, R.M. (1993)Adv. Lipid Res. 25, 1–24.

    PubMed  CAS  Google Scholar 

  2. Hakomori, S. (1981)Ann. Rev. Biochem. 50, 733–764.

    Article  PubMed  CAS  Google Scholar 

  3. Bell, R.M., Hunnun, Y.A., and Merrill A.H., Jr. (eds.), (1993)Sphingolipids Part A: Functions and Breakdown Products: Advances in Lipid Research, Vol. 25, Academic Press, San Diego.

    Google Scholar 

  4. Scott, A.L., Diala, C., Moraga, D.A., Ibrahim, M.S., Reeding, L., and Tamashiro, W.K. (1988)Exp. Parasitol. 67, 307–323.

    Article  PubMed  CAS  Google Scholar 

  5. Robertson, W.M., Spiegel, Y., Jansson, H.-B., Marban-Mendoza, N., and Zuckerman, B.M. (1989)Nematologica 35, 180–186.

    Article  Google Scholar 

  6. Davis, E.L., Kaplan, D.T., Permar, T.A., Dickson, D.W., and Mitchell, D.J. (1988)J. Nematol. 20, 609–619.

    PubMed  CAS  Google Scholar 

  7. Apfel, H., Eisenbeiss, W.F., and Meyer, T.F. (1992)Mol. Biochem. Parasitol. 52, 63–74.

    Article  PubMed  CAS  Google Scholar 

  8. Hill, D.E., Fetterer, R.H., and Urban, J.F., Jr. (1991)Exp. Parasitol. 73, 376–383.

    Article  PubMed  CAS  Google Scholar 

  9. Maloney, M.D., and Semprevivo, L.H. (1991)Parasitol. Res. 77, 294–300.

    Article  PubMed  CAS  Google Scholar 

  10. Kapur, J., and Sood, M.L. (1985)Zbl. Vet. Med. 32B, 345–353.

    Google Scholar 

  11. Sarwal, R., Sanyal, S.N., and Khera, S. (1989)J. Helminthol. 63, 287–297.

    Article  PubMed  CAS  Google Scholar 

  12. Vykhrestyuk, N.P., Yarygina, G.V., and Andreeva, L.I. (1974)J. Evol. Biochem. Physiol. 10, 134–137.

    Google Scholar 

  13. Kwong, A.Y.H., Wong, P.C.L., and Ko, R.C. (1990)Comp. Biochem. Physiol. 95B, 193–197.

    CAS  Google Scholar 

  14. Aggarwal, R., Sanyal, S.N., and Khera, S. (1989)Acta Vet. Hung. 37, 335–347.

    PubMed  CAS  Google Scholar 

  15. Chitwood, D.J. (1991) inPhysiology and Biochemistry of Sterols (Patterson, G.W., and Nes, W.D., eds) pp. 257–293, American Oil Chemists' Society, Champaign.

    Google Scholar 

  16. Chitwood, D.J., McClure, M.A., Feldlaufer, M.F., Lusby, W.R., and Oliver, J.E. (1987)J. Nematol. 19, 352–360.

    CAS  PubMed  Google Scholar 

  17. Wood, W.B. (ed.) (1988)The Nematode Caenorhabditis elegans, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  18. Chitwood, D.J., and Feldlaufer, M.F. (1990)J. Nematol. 22, 598–607.

    CAS  PubMed  Google Scholar 

  19. Folch, J., Lees, M., and Stanley, G.H.S. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  20. Hara, A., and Radin, N.S. (1978)Anal. Biochem. 90 420–426.

    Article  PubMed  CAS  Google Scholar 

  21. Lusby, W.R., Oliver, J.E., and Thompson, M.J. (1987) inApplications of New Mass Spectrometry Techniques in Pesticide Chemistry (Rosen, J.D., ed.) pp. 99–115, John Wiley & Sons, New York.

    Google Scholar 

  22. Gaver, R.C., and Sweeley, C.C. (1965)J. Am. Oil Chem. Soc. 42, 294–298.

    PubMed  CAS  Google Scholar 

  23. Hayashi, A., and Matsubara, T. (1971)Biochim. Biophys. Acta 248, 306–314.

    PubMed  CAS  Google Scholar 

  24. Thompson, M.J., Feldlaufer, M.F., Lozano, R., Rees, H.H., Lusby, W.R., Svoboda, J.A., and Wilzer, K.R. (1987)Arch. Insect Biochem. Physiol. 4, 1–15.

    Article  CAS  Google Scholar 

  25. Sweeley, C.C., Bentley, R., Makita, M., and Wells, W.W. (1963)J. Am. Oil Chem. Soc. 85, 2497–2507.

    CAS  Google Scholar 

  26. Rouser, G., Kritchevsky, G., and Yamamoto, A. (1967) inLipid Chromatographic Analysis (Marinetti, G.V., ed.) pp. 99–162. Marcel Dekker, New York.

    Google Scholar 

  27. Muralidharan, F.N., and Muralidharan, V.B. (1984)Chem. Phys. Lipids 34, 257–263.

    Article  CAS  Google Scholar 

  28. Dabrowski, J., Egge, H., and Hanfland, P. (1980)Chem. Phys. Lipids 26, 187–196.

    Article  PubMed  CAS  Google Scholar 

  29. Kawai, G. (1989)Biochim. Biophys. Acta 1001, 185–190.

    PubMed  CAS  Google Scholar 

  30. Sitrin, R.D., Chan, G., Dingerdissen, J., DeBrosse, C., Mehta., R., Roberts, G., Rottschaefer, S., Staiger, D., Valenta, J., Snader, K.M., Stedman, R.J., and Hoover, J.R.E. (1988)J. Antibiotics 41, 469–840.

    CAS  Google Scholar 

  31. Dabrowski, J., Hanfland, P., and Egge, H. (1982)Meth. Enzymol. 83, 69–86.

    Article  PubMed  CAS  Google Scholar 

  32. Karlsson, K.-A. (1970)Lipids 5, 878–891.

    Article  PubMed  CAS  Google Scholar 

  33. Sugita, M., Itasaka, O., and Hori, T. (1976)Chem. Phys. Lipids 16, 1–8.

    Article  PubMed  CAS  Google Scholar 

  34. Yasugi, E., Kasama, T., and Seyama, Y. (1988)J. Biochem. 103, 889–893.

    PubMed  CAS  Google Scholar 

  35. Irie, A., Kubo, H., and Hoshi, M. (1990)J. Biochem. 107, 578–586.

    PubMed  CAS  Google Scholar 

  36. Hayashi, A., Nishimura, Y., and Matsubara, T. (1991)Biochim. Biophys. Acta 1083, 179–186.

    PubMed  CAS  Google Scholar 

  37. Gurr, M.I., and Harwood, J.L. (1991)Lipid Biochemistry, 4th edn., Chapman and Hall, London.

    Google Scholar 

  38. Hori, T., and Sugita, M. (1991)Prog. Lipid Res. 32, 25–45.

    Article  Google Scholar 

  39. Dennis, R.D., and Wiegandt, H. (1993)Adv. Lipid Res. 26, 321–351.

    PubMed  CAS  Google Scholar 

  40. Hutzell, P.A., and Krusberg, L.R. (1982)Comp. Biochem. Physiol. 73B, 517–520.

    CAS  Google Scholar 

  41. Krusberg, L.R. (1972)Comp. Biochem. Physiol. 41B, 89–98.

    Google Scholar 

  42. Chitwood, D.J., and Krusberg, L.R. (1981)Comp. Biochem. Physiol. 69B, 115–120.

    CAS  Google Scholar 

  43. Shibuya, H., Kawashima, K., Sakagami, M., Kawanishi, H., Shimomura, M., Ohashi, K., and Kitagawa, I. (1990)Chem. Pharm. Bull. 38, 2933–2938.

    PubMed  CAS  Google Scholar 

  44. Lester, R.L., Wells, G.B., Oxford, G., and Dickson, R.C. (1993)J. Biol. Chem. 268, 845–856.

    PubMed  CAS  Google Scholar 

  45. Nishimura, K., Suzuki, A., and Kino, H. (1991)Biochim. Biophys. Acta, 1086, 141–150.

    PubMed  CAS  Google Scholar 

  46. Makaaru, C.K., Damian, R.T., Smith, D.F., and Cummings, R.D. (1992)J. Biol. Chem. 267, 2251–2257.

    PubMed  CAS  Google Scholar 

  47. Persat, F., Bouhours, J.-F., Mojon, M., and Petavy, A.-F. (1992)J. Biol. Chem. 267, 8764–8769.

    PubMed  CAS  Google Scholar 

  48. Kawakami, Y., Nakamura, K., Kojima, H., Suzuki, M., Inagaki, F., Suzuki, A., Sonoki, S., Uchida, A., Murata, Y., and Tamai, Y. (1993)J. Biochem. 114, 677–683.

    PubMed  CAS  Google Scholar 

  49. Bankov, I., and Barrett, J. (1993)Int. J. Parasitol. 23, 1083–1085.

    Article  PubMed  CAS  Google Scholar 

  50. Curatolo, W. (1987)Biochim. Biophys. Acta, 906, 137–160.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fatty acids are represented by a binumeric system in which the first number refers to the chain length, and the second number refers to the number of double bonds.

About this article

Cite this article

Chitwood, D.J., Lusby, W.R., Thompson, M.J. et al. The glycosylceramides of the nematodeCaenorhabditis elegans contain an unusual, branched-chain sphingoid base. Lipids 30, 567–573 (1995). https://doi.org/10.1007/BF02537032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537032

Keywords

Navigation