Skip to main content
Log in

Structural Analysis of the Minor Cerebrosides from a Glass Sponge Aulosaccus sp.

  • Original Article
  • Published:
Lipids

Abstract

The minor cerebrosides from a Far-Eastern glass sponge Aulosaccus sp. were analyzed as constituents of some multi-component RP-HPLC fractions. The structures of eighteen new and one known cerebrosides were elucidated on the basis of NMR spectroscopy, mass spectrometry, optical rotation data and chemical transformations. These β-D-glucopyranosyl-(1→1)-ceramides contain sphingoid bases N-acylated with straight-chain (2R)-2-hydroxy fatty acids, namely, (2S,3S,4R,11Z)-2-aminoeicos-11-ene-1,3,4-triol, acylated with 15E-22:1, 16Z-21:1, 15Z-21:1, 15Z-20:1, 15E-20:1, 19:0, 18:0 acids, (2S,3S,4R)-2-amino-13-methyltetradecane-1,3,4-triol—with 19Z-26:1, 16Z-23:1, 23:0, 22:0 acids, (2S,3S,4R)-2-amino-14-methylpentadecane-1,3,4-triol—with 16Z-23:1, 16E-23:1, 15Z-22:1, 22:0 acids, (2S,3S,4R)-2-amino-14-methylhexadecane-1,3,4-triol, linked to 16Z-23:1, 15Z-22:1 acids, (2S,3S,4R)-2-amino-9-methylhexadecane-1,3,4-triol—to 16Z-23:1 acid, and (2S,3S,4R)-2-aminohexadecane-1,3,4-triol, attached to 15Z-22:1 acid. The 13-methyl and 9-methyl-branched trihydroxy sphingoid base backbones (C15 and C17, respectively) have not been found previously in sphingolipids. The ceramide parts, containing other backbones, present new variants of N-acylation of the marine sphingoid bases with the 2-hydroxy fatty acids. The combination of the instrumental and chemical methods used in this study improved the efficiency of the structural analysis of such complex cerebroside mixtures that gave more detailed information on glycosphingolipid metabolism of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FA:

Fatty acid(s)

RP-HPLC:

High-performance liquid chromatography in the reversed-phase mode

DMDS:

Dimethyl disulfide

RT:

Retention time

ESM:

Electronic Supplementary Material

11Z-t20:1:

(2S,3S,4R,11Z)-2-Aminoeicos-11-ene-1,3,4-triol

13-methyl-t14:0:

(2S,3S,4R)-2-Amino-13-methyltetradecane-1,3,4-triol

14-methyl-t15:0:

(2S,3S,4R)-2-Amino-14-methylpentadecane-1,3,4-triol

14-methyl-t16:0:

(2S,3S,4R)-2-Amino-14-methylhexadecane-1,3,4-triol

9-methyl-t16:0:

(2S,3S,4R)-2-Amino-9-methylhexadecane-1,3,4-triol

t16:0:

(2S,3S,4R)-2-Aminohexadecane-1,3,4-triol

References

  1. Kawahara K, Lindner B, Isshiki Y, Jakob K, Knirel YA, Zähringer U (2001) Structural analysis of a new glycosphingolipid from the lipopolysaccharide-lacking bacterium Sphingomonas adhaesiva. Carbohydr Res 333:87–93

    Article  CAS  PubMed  Google Scholar 

  2. Díaz de Vivar ME, Seldes AM, Maier MS (2002) Two novel glucosylceramides from gonads and body walls of the Patagonian starfish Allostichaster inaequalis. Lipids 37:597–603

    Article  PubMed  Google Scholar 

  3. Santalova EA, Denisenko VA, Dmitrenok PS, Drozdov AL, Stonik VA (2015) Cerebrosides from a Far-Eastern glass sponge Aulosaccus sp. Lipids 50:57–69

    Article  CAS  Google Scholar 

  4. Vetter W, Walther W (1990) Preparation of pyrrolidides from fatty acids via trimethylsilyl esters for gas chromatographic-mass spectrometric analysis. J Chromatogr 513:405–407

    Article  CAS  Google Scholar 

  5. Leontein K, Lindberg B, Lönngren J (1978) Assignment of absolute configuration of sugars by glc of their acetylated glycosides formed from chiral alcohols. Carbohydr Res 62:359–362

    Article  CAS  Google Scholar 

  6. Gunston FD, Pollard MR, Scrimgeour CM, Vedanayagam HS (1977) 13C-Nuclear magnetic resonance studies of olefinic fatty acids and esters. Chem Phys Lipids 18:115–129

    Article  Google Scholar 

  7. Frost DJ, Gunstone FD (1975) The PMR analysis of non-conjugated alkenoic and alkynoic acids and esters. Chem Phys Lipids 15:53–85

    Article  CAS  PubMed  Google Scholar 

  8. Sugiyama S, Honda M, Komori T (1988) Biologically active glycosides from Asteroidea. XV. Asymmetric synthesis of phytosphingosine and phytosphingosine anhydro base: assignment of the absolute stereochemistry. J Liebigs Ann Chem 1988:619–625

    Article  Google Scholar 

  9. AOCS Lipid Library (updated June 2012) N-Acyl pyrrolidine derivatives of fatty acids–archive of mass spectra. Pyrrolidine derivatives of saturated branched-chain fatty acids. http://lipidlibrary.aocs.org/content.cfm?ItemNumber=39471. Accessed 30 Sept 2015

  10. Database SciFinder. https://scifinder.cas.org. Accessed 30 Sept 2015

  11. Tan RX, Chen JH (2003) The cerebrosides. Nat Prod Rep 20:509–534

    Article  CAS  PubMed  Google Scholar 

  12. Muralidhar P, Radhika P, Krishna N, Venkata Rao D, Bheemasankara Rao Ch (2003) Sphingolipids from marine organisms: a review. Nat Prod Sci 9:117–142

    CAS  Google Scholar 

  13. Li HY, Matsunaga S, Fusetani N (1995) Halicylindrosides, antifungal and cytotoxic cerebrosides from the marine sponge Halichondria cylindrata. Tetrahedron 51:2273–2280

    Article  CAS  Google Scholar 

  14. Loukaci A, Bultel-Ponce V, Longeon A, Guyot M (2000) New lipids from the tunicate Cystodytes cf. dellechiajei, as PLA2 inhibitors. J Nat Prod 63:799–802

    Article  CAS  PubMed  Google Scholar 

  15. Kawano Y, Higuchi R, Isobe R, Komori T (1988) Biologically active glycosides from asteroidea, XIII. Glycosphingolipids from the starfish Acanthaster planci, 2. Isolation and structure of six new cerebrosides. Liebigs Ann Chem 1988:19–24

    Article  Google Scholar 

  16. Inagaki M, Nakamura K, Kawatake S, Higuchi R (2003) Isolation and structural determination of four new ceramide lactosides from the starfish Luidia maculata. Eur J Org Chem 2003:325–331

    Article  Google Scholar 

  17. Yamada K, Hara E, Miyamoto T, Higuchi R, Isobe R, Honda S (1998) Isolation and structure of biologically active glycosphingolipids from the sea cucumber Cucumaria echinata. Eur J Org Chem 1998:371–378

    Article  Google Scholar 

  18. Yamada K, Sasaki K, Harada Y, Isobe R, Higuchi R (2002) Constituents of Holothuroidea, 12. Isolation and structure of glucocerebrosides from the sea cucumber Holothuria pervicax. Chem Pharm Bull 50:1467–1470

    Article  CAS  PubMed  Google Scholar 

  19. AOCS Lipid Library (updated June 2012) Fatty acids: branched-chain. Saturated iso- and anteiso-Methyl-Branched Fatty Acids. Saturated Mid-Chain Methyl-Branched Fatty Acids. http://lipidlibrary.aocs.org/content.cfm?ItemNumber=39321. Accessed 30 Sept 2015

Download references

Acknowledgments

This study was financially supported by a Grant of the President of the Russian Federation (Program for State Support of Leading Scientific Schools, Grant NSh-148.2014.4). The authors express their gratitude to Drs O.P. Moiseenko, L.P. Ponomarenko for their kind help in GC and GC–MS analyses and Prof. V.A. Stonik for reading the manuscript and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Santalova.

Additional information

The sphingoid bases are abbreviated in accordance with an accepted short-hand nomenclature.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santalova, E.A., Denisenko, V.A. & Dmitrenok, P.S. Structural Analysis of the Minor Cerebrosides from a Glass Sponge Aulosaccus sp.. Lipids 50, 1209–1218 (2015). https://doi.org/10.1007/s11745-015-4077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4077-x

Keywords

Navigation