Skip to main content
Log in

Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids

  • Article
  • Published:
Lipids

Abstract

The time course of hydrolysis of a mixed phospholipid substrate containing bovine liver 1,2-diacyl-sn-glycero-3-phosphocholine (PC) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine (PE) catalyzed byCrotalus adamanteus phospholipase A2 was measured before and after peroxidation of the lipid substrate. The rate of hydrolysis was increased after peroxidation by an iron/adenosine diphosphate (ADP) system; the presence of iron/ADP in the assay had a minimal inhibitory effect. The rate of lipid hydrolysis was also increased after the substrate was peroxidized by heat and O2. Similarly, peroxidation increased the rate of hydrolysis of soy PC liposomes that did not contain PE. In order to minimize interfacial factors that may result in an increase in rate, the lipids were solubilized in Triton X-100. In mixtures of Triton with soy PC in the absence of PE, peroxidation dramatically increased the rate of lipid hydrolysis. In addition, the rate of hydrolysis of the unoxidizable lipid 1-palmitoyl-2-[1-14C]oleoyl PC incorporated into PC/PE liposomes was unaffected by peroxidation of the host lipid. These data are consistent with the notions that the increase in rate of hydrolysis of peroxidized PC substrates catalyzed by phospholipase A2 is due largely to a preference for peroxidized phospholipid molecules as substrates and that peroxidation of host lipid does not significantly increase the rate of hydrolysis of nonoxidized lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADP:

adenosine diphosphate

LDL:

low-density lipoproteins

PC:

1,2-diacyl-sn-glycero-3-phosphocholine

PE:

1,2-diacyl-sn-glycero-3-phosphoethanolamine

TBARS:

thiobarbituric acid reactive substances

References

  1. Chien, K.R., Pfau, R.G., and Farber, J.L. (1979)Am. J. Pathol. 97, 505–530.

    PubMed  CAS  Google Scholar 

  2. Jackson, M.J., Jones, D.A., and Harris, E.J. (1984)Biosci, Rep. 4, 581–587.

    Article  CAS  Google Scholar 

  3. Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., and Steinberg, D. (1984)Proc. Natl. Acad. Sci. USA 83, 3883–3887.

    Article  Google Scholar 

  4. Chan, P.H., Yurko, M., and Fishman, R.A. (1982)J. Neurochem. 38, 525–531.

    Article  PubMed  CAS  Google Scholar 

  5. Katz, A.M., and Messineo, F.C. (1981)Circ. Res. 48, 1–16.

    PubMed  CAS  Google Scholar 

  6. Otani, H., Prasad, M.R., Jones, R.M., and Das, D.K. (1989)Am. J. Physiol., 257, H252-H258.

    PubMed  CAS  Google Scholar 

  7. Hochmann, Y. (1981)J. Biol. Chem. 256, 4783–4788.

    Google Scholar 

  8. Lawrence, A.J., Morrel, G.R., and Steele, J. (1974)Eur. J. Biochem. 48, 277–286.

    Article  PubMed  CAS  Google Scholar 

  9. Ngwenya, B.Z., and Yamamoto, N. (1985)Biochim Biophys. Acta 839, 9–15.

    PubMed  CAS  Google Scholar 

  10. Au, A.M., Chan, P.H., and Fishman, R.A. (1985)J. Cell. Biochem. 27, 449–453.

    Article  PubMed  CAS  Google Scholar 

  11. Weglicki, W.B., Dickens, B.F., and Mak, I.T. (1984)Biochem. Biophys. Res. Commun. 124, 229–235.

    Article  PubMed  CAS  Google Scholar 

  12. Yasuda, M., and Fujita, T. (1977)Japan J. Pharmacol. 27, 429–435.

    CAS  Google Scholar 

  13. Borowitz, S.M., and Montgomery, C. (1989)Biochem. Biophys. Res. Commun. 158, 1021–1028.

    Article  PubMed  CAS  Google Scholar 

  14. Sevanian, A., and Kim, E. (1985)J. Free Radicals Biol. Med. 1 263–271.

    CAS  Google Scholar 

  15. Sevanian, A., and McLeod, L.L. (1987)Lipids 22, 627–636.

    PubMed  CAS  Google Scholar 

  16. van Kuijk, F.J.G.M., Sevanian, A., Handelman, G.J., and Dratz, E.A. (1987)Trends Biochem. Sci. 12, 31–34.

    Article  Google Scholar 

  17. van Kuijk, F.J., Handelman, G.J., and Dratz, E.A. (1985)J. Free Radicals Biol. Med. 1, 421–427.

    Article  Google Scholar 

  18. Tan, K.H., Meyer, D.J., Belin, J., and Ketterer, B. (1984)Biochem. J. 220, 243–252.

    PubMed  CAS  Google Scholar 

  19. Sevanian, A., Wratten, M.L., McLeod, L.L., and Kim, E. (1988)Biochim. Biophys. Acta 961, 316–327.

    PubMed  CAS  Google Scholar 

  20. Apitz-Castro, R., Jain, M.K., and de Haas, G.H. (1982)Biochim. Biophys. Acta 688, 349–356.

    Article  PubMed  CAS  Google Scholar 

  21. McLean, L.R., Demel, R.A., Socorro, L., Shinomiya, M., and Jackson, R.L. (1986)Meth. Enzymol. 129, 738–763.

    Article  PubMed  CAS  Google Scholar 

  22. Roberts, M.F., Adamich, M., Robson, R.J., and Dennis, E.A. (1979).Biochemistry, 18, 3301–3307.

    Article  PubMed  CAS  Google Scholar 

  23. Sevanian, A., Stein, R.A., and Mead, J.F. (1981)Lipids 16, 781–789.

    Article  PubMed  CAS  Google Scholar 

  24. Adamich, M., Roberts, M.F., and Dennis, E.A. (1979)Biochemistry 18, 3308–3314.

    Article  PubMed  CAS  Google Scholar 

  25. Sparrow, C.P., Parthasarathy, S., and Steinberg, D. (1988)J. Lipid Res. 29, 745–753.

    PubMed  CAS  Google Scholar 

  26. McLean, L.R., and Hagaman, K.A. (1989)Biochemistry, 28, 321–327.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

McLean, L.R., Hagaman, K.A. & Davidson, W.S. Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28, 505–509 (1993). https://doi.org/10.1007/BF02536081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536081

Keywords

Navigation