Skip to main content
Log in

Lipid abnormalities in the brain in adult Down’s syndrome and Alzheimer’s disease

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Quantitative analysis by HPTLC of the major lipid classes and dilichol, and of fatty acyl groups of separated phosphoglycerides by capillary GLC, has been carried out on the gray matter of frontal cerebral cortex of brains from six Down’s syndrome (DS) and six Alzheimer’s disease (AD) adults, and six each of two corresponding sets of age-matched controls; specimens of DS and control cerebellum and corpus callosum were also analyzed. In DS frontal cortex, but not in AD frontal cortex, compared to their respective controls there was a decrease in the fraction of phosphatidylethanolamine (PE) and an increase in the fractions of sphingomyelin (SPM) and phosphatidylserine (PS). Abnormalities were not found in the proportions of major lipid classes in DS cerebellum or corpus callosum. The concentration of dolichol was elevated for age in the frontal cortex of DS and of AD. In the phosphoglycerides of DS frontal cortex, the fatty acyl composition showed small, but statistically significant, differences from those of age-matched controls, and some slight abnormalities were also detected in DS corpus callosum. The alterations in DS frontal cortex included decreases in (n-6) and increases in (n-3) groups in choline and ethanolamine phosphoglycerides (CPG and EPG), as had previously been found in EPG and serine phosphoglyceride (SPG) of the DS fetal brain. In DS frontal cortex, the proportion of 22∶4(n-6) groups was decreased in SPG, and in inositol phosphoglyceride (IPG) 18∶1(n-9) was increased. There were also small but significant alterations in DS frontal cortex in the fractions of shorter chain groups in CPG. In marked contrast, most of the fatty acyl abnormalities seen in DS were absent in the AD frontal cortex. It is therefore suggested that some abnormalities in the composition of cerebral membranes present prenatally in DS may persist into adulthood, and are not directly related to AD-type pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DS:

Down’s syndrome

PUFA:

Polyunsaturated fatty acyl

SPM:

Sphingomyelin

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

SULF:

Sulfatides

CPG:

Choline phosphoglyceride

SPG:

Serine phosphoglyceride

FAME:

Fatty acid methyl ester

TLC:

Thin-layer chromatography

GLC:

Gas-liquid chromatography

AD:

Alzheimer’s disease

IS:

Internal standard

PC:

Phosphatidylcholine

PS:

Phosphatidylserine

CB:

Cerebrosides

CHOL:

Cholesterol

EPG:

Ethanolamine phosphoglyceride

IPG:

Inositol phosphoglyceride

ChAT:

Choline acetyltransferase

HPTLC:

High-performance thinlayer chromatography

References

  • Andersson M., Appelkvist E. L., Kristensson K., and Dallner G. (1987) Distribution of dolichol and dolichol phosphate in human brain.J. Neurochem. 49, 685–691.

    Article  PubMed  CAS  Google Scholar 

  • Arienti G., Goracci G., and Porcellati G. (1981) Glycerophospholipid metabolism in neuronal and glial cell-enriched fractions.Neurochem. Res. 6, 729–742.

    Article  PubMed  CAS  Google Scholar 

  • Banik N. L., Davison A. N., Palo J., and Savolainen H. (1975) Biochemical studies on myelin isolated from the brains of patients with Down’s syndrome.Brain 98, 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Barany M., Chang Y., Arus C., Rustan T., and Frey W. H. II (1985) Increased glycerol-3-phosphorylcholine in postmorten Alzheimer’s brain.Lancet i, 517.

    Article  Google Scholar 

  • Barenholz Y. (1984) Spingomyelin-lecithin balance in membranes: composition, structure, and functional relationships,Physiology of Membrane Fluidity (Shinitksy M., ed.), vol. I, pp. 131–173, CRC, Boca Raton, FL.

    Google Scholar 

  • Blusztajn J. K., Holbrook P. G., Lakher M., Liscovitch M., Maire J.-C., Mauron C., Richardson U. I., Tacconi M., and Wurtman R. J. (1986) “Autocannabilism” of membrane choline-phospholipids: Physiology and pathology.Psychopharmacol. Bull. 22, 781–786.

    PubMed  CAS  Google Scholar 

  • Bourre J. M., Pascal G., Durand G., Masson M., Dumont O., and Piciotti M. (1984) Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n−3 fatty acids.J. Neurochem. 43, 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury K. (1984) Ethanolamine phosphoglyceride formation by decarboxylation of serine phosphoglyceride in myelinating organ cultures of cerebellum.J. Neurochem. 43, 382–387.

    Article  PubMed  CAS  Google Scholar 

  • Brooksbank B. W. L. and Balázs R. (1984) Superoxide dismutase, glutathione peroxidase and lipoperoxidation in Down’s syndrome fetal brain.Dev. Brain Res. 16, 37–44.

    Article  CAS  Google Scholar 

  • Brooksbank B. W. L. and Balázs R. (1988) Development and aging of the brain in a common human aneuploidy—Down’s syndrome,Handbook of Human Growth and Developmental Biology (Meisami E. and Timiras P. S., eds.), vol. I, part C, pp. 21–44, CRC, Boca Raton, FL.

    Google Scholar 

  • Brooksbank B. W. L., Martinez M., and Balázs R. (1985) Altered composition of polyunsaturated fatty acyl groups in phosphoglycerides of Down’s syndrome fetal brain.J. Neurochem. 44, 869–874.

    Article  PubMed  CAS  Google Scholar 

  • Brooksbank B. W. L., Walker D., Balázs R., and Jorgensen O. S. (1989) Neuronal maturation in the foetal brain in Down’s syndrome.Early Hum. Dev. 18, 237–246.

    Article  PubMed  CAS  Google Scholar 

  • Brooksbank B. W. L., and McGovern, J. (1989) Gangliosides in the brain in adult Down’s syndrome and Alzheimer’s disease,Molec. Chem. Neuropathol.,11, ...

    Google Scholar 

  • Brun A. and Englund E. (1986) A white matter disorder in dementia of the Alzheimer type: A pathoanatomical study.Ann. Neurol. 19, 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan A. G. and Kanfer J. N. (1980) Topographical distribution of base exchange activities in rat brain subcellular fractions.J. Neurochem. 34, 720–725.

    Article  PubMed  CAS  Google Scholar 

  • Butler M. and Morell P. (1983) The role of phosphatidylserine decarboxylase in brain phospholipid metabolism.J. Neurochem. 41, 1445–1454.

    Article  PubMed  CAS  Google Scholar 

  • Candy J. M., Perry E. K., Perry R. M., Court J. A., Oakley A. E., and Edwardson J. A. (1986) The current status of the cortical cholinergic system in Alzheimer’s disease and Parkinson’s disease.Prog. Brain Res. 65, 105–132.

    Article  Google Scholar 

  • Chia L. S., Thompson J. E., and Moscarello M. A. (1984) X-Ray diffraction evidence for myelin disorder in brain from humans with Alzheimer’s disease.Biochim. Biophys. Acta 775, 308–312.

    Article  PubMed  CAS  Google Scholar 

  • Chojnacki T. and Dallner G. (1988) The biological role of dolichol.Biochem. J. 251, 1–9.

    PubMed  CAS  Google Scholar 

  • Collerton D. (1986) Cholinergic function and intellectual decline in Alzheimer’s disease.Neuroscience 19, 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Coyle J. T., Oster-Granite M. L., and Gearhart J. D. (1986) The neurobiologic consequences of Down’s syndrome.Brain Res. Bull. 16, 773–787.

    Article  PubMed  CAS  Google Scholar 

  • Donato H., Jr. (1981) Lipid peroxidation, cross-linking reactions and aging,Age Pigments (Sohal R. S., ed.), pp. 63–81, Elsevier/North Holland Biomedical, Amsterdam.

    Google Scholar 

  • Dunphy P. J., Kerr J. D., Pennock J. F., and Whittle K. J. (1967) The plurality of long chain isoprenoid alcohols (polyprenols) from natural sources.Biochim. Biophys. Acta 136, 136–147.

    PubMed  CAS  Google Scholar 

  • Ellison D. W., Beal M. F., and Martin J. B. (1987) Phosphoethanolamine and ethanolamine are decreased in Alzheimer’s disease and Huntington’s disease.Brain Res. 417, 389–392.

    Article  PubMed  CAS  Google Scholar 

  • Elroy-Stein O., Bernstein Y., and Groner Y. (1986) Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: Extenuation of paraquatmediated cytotoxicity and enhancement of lipid peroxidation.EMBO J. 5, 615–622.

    PubMed  CAS  Google Scholar 

  • Fonnum F. (1975) A rapid radiochemical method for the determination of choline acetyltransferase.J. Neurochem. 24, 407–409.

    Article  PubMed  CAS  Google Scholar 

  • Gaiti A., DeMedio G. E., Brunetti M., Amaducci L., and Porcellati G. (1974) Properties and function of the calcium-dependent incorporation of choline, ethanolamine and serine into the phospholipids of isolated rat brain microsomes.J. Neurochem. 23, 1153–1159.

    Article  PubMed  CAS  Google Scholar 

  • Godridge H., Reynolds G. P., Czudek C., Calcutt N. A., and Benton M. (1987) Alzheimer-like neurotransmitter deficits in adult Down’s syndrome brain tissue.J. Neurol. Neurosurg. Psychiatry 50, 775–778.

    Article  PubMed  CAS  Google Scholar 

  • Hall N. A. and Patrick A. D. (1985) Dolichol and phosphorylated dolichol content of tissues in ceroid-lipofuscinosis.J. Inherited Metab. Dis. 8, 178–183.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J., Adolfsson R., Alafuzoff I., Bucht G., Marcusson J., Nyberg P., Perdahl E., Wester P., and Winblad B. (1985) Transmitter deficits in Alzheimer’s disease.Neurochem. Int. 4, 545–573.

    Article  Google Scholar 

  • Hemming F. W. (1983) Biosynthesis of dolichol and related compounds,Biosynthesis of Isoprenoid Compounds, (Porter J. W. and Spurgeon S. L., eds.), vol. II, pp. 305–354, Wiley, New York.

    Google Scholar 

  • Horrocks L. A., VanRollins M., and Yates A. J. (1981) Lipid changes in the ageing brain,The Molecular Basis of Neuropathology (Davison A. N. and Thompson R. H. S., eds.), pp. 601–630, Arnold, New York.

    Google Scholar 

  • Jamieson G. R. (1975) Gas-liquid identification techniques for long-chain unsaturated fatty acids.J. Chromatogr. Sci. 13, 491–497.

    PubMed  CAS  Google Scholar 

  • Johnson R. C., McKean C. M., and Shah S. N. (1977) Fatty acid composition of lipids in cerebral myelin and synaptosomes in phenylketonuria and Down syndrome.Arch. Neurol. 34, 288–294.

    PubMed  CAS  Google Scholar 

  • Kedziora J. and Bartosz G. (1988) Down’s syndrome: A pathology involving the lack of balance of reactive oxygen species.Free Radical Biol. Med. 4, 317–330.

    Article  CAS  Google Scholar 

  • Ledeen R. W., Yu R. K., and Eng L. F. (1973) Gangliosides of human myelin: Sialosylgalactosylceramide (G7) as a major component.J. Neurochem. 21, 829–839.

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz B. E. and Siegel B. V. (1980) Aspects of free radical reactions in biological systems.J. Gerontol. 35, 45–56.

    Google Scholar 

  • Lepage G. and Roy C. C. (1986) Direct transesterification of all classes of lipids in a one-step reaction.J. Lipid Res. 27, 114–119.

    PubMed  CAS  Google Scholar 

  • Macala L. J., Yu R. K., and Ando S. (1983) Analysis of brain lipids by high performance thin-layer chromatography and densitometry.J. Lipid Res. 24, 1243–1250.

    PubMed  CAS  Google Scholar 

  • Malone M. J. and Szoke M. C. (1985) Neurochemical changes in white matter: Aged human brain and Alzheimer’s disease.Arch. Neurol. 42, 1063–1066.

    PubMed  CAS  Google Scholar 

  • Mann, D. M. A. (1988) The pathological association between Down syndrome and Alzheimer disease.Mech. Ageing Devel. 43, 99–136.

    Article  CAS  Google Scholar 

  • Mann D. M. A., Yates P. O., and Marcyniuk B. (1984) Relationship between pigment accumulation and age in Alzheimer’s disease and Down syndrome.Acta Neuropathol. (Berl.) 63, 72–77.

    Article  CAS  Google Scholar 

  • Mann D. M. A., Yates P. O., Stamp J. E., Lincoln J., and Toper S. (1980) Changes in nerve cells of the human cerebellum in senile dementia.J. Clin. Exp. Gerontol. 2, 7–22.

    Google Scholar 

  • Martin G. M. (1977) Genetic syndromes in man with potential relevance to the pathology of aging,Genetic Effects on Aging, Birth Defects: Original Article Series (Bergsma, D., Harrison D. E., and Paul N. W., eds.), pp. 5–40, The National Foundation of March of Dimes, A. R. Liss, New York.

    Google Scholar 

  • Ng Ying Kin N. M. K., Palo J., Haltia M., and Wolfe L. S. (1983) High levels of brain dolichols in neuronal ceroid-lipofuscinosis and senescence.J. Neurochem. 40, 1465–1473.

    PubMed  CAS  Google Scholar 

  • Norton W. T. and Poduslo S. E. (1971) Neuronal perikarya and astroglia of rat brain: Chemical composition during myelination.J. Lipid Res. 12, 84–90.

    PubMed  CAS  Google Scholar 

  • O’Brien J. S. and Sampson E. L. (1965) Lipid composition of the normal human brain: Grey matter, white matter, and myelin.J. Lipid Res. 6, 537–544.

    PubMed  Google Scholar 

  • Oliver C. and Holland A. J. (1986) Down’s syndrome and Alzheimer’s disease: A review.Psychol. Med. 16, 307–322.

    Article  PubMed  CAS  Google Scholar 

  • Perry T. L., Young V. W., Bergeron C., Hansen S., and Jones K. (1987) Amino acids, glutathione and glutathione transferase activity in the brains of patients with Alzheimer’s disease.Ann. Neurol. 21, 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew J. W., Withers G., Panchalingam K., and Post J. F. M. (1987)31P Nuclear magnetic resonance (NMR) spectroscopy of brain in aging and Alzheimer’s disease.J. Neural Transm. [Suppl.] 24, 261–268.

    CAS  Google Scholar 

  • Pettegrew J. W., Moossy M., Withers G., McKeag D., and Panchalingam K. (1988a)31P Nuclear magnetic resonance study of the brain in Alzheimer’s disease.J. Neuropathol. Exp. Neurol. 47, 235–248.

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew J. W., Panchalingam K., Moossy J., Martinez J., Rao G., and Boller F. (1988b) Correlation of phosphorus-31 magnetic resonance spectroscopy and morphological findings in Alzheimer’s disease.Arch. Neurol. 45, 1093–1096.

    PubMed  CAS  Google Scholar 

  • Porcellati G., Arienti G., Pirotta M., and Giogini D. (1971) Base-exchange reactions for the synthesis of phospholipids in nervous tissue: The incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes.J. Neurochem. 18, 1395–1417.

    Article  PubMed  CAS  Google Scholar 

  • Pullarkat R. K. and Reha H. (1982) Accumulation of dolichols in brains of elderly.J. Biol. Chem. 257, 5991–5993.

    PubMed  CAS  Google Scholar 

  • Pullarkat R. K., Reha H., and Pullarkat P. S. (1984) Age-associated increase of free dolichol levels in mice.Biochim. Biophys. Acta 793, 494–496.

    PubMed  CAS  Google Scholar 

  • Rip J. W., Rupar C. A., Ravi K., and Carroll K. K. (1985) Distribution, metabolism and function of dolichol and polyprenols.Prog. Lipid Res. 24, 269–309.

    Article  PubMed  CAS  Google Scholar 

  • Rosser M. N., Garrett N. J., Johnson A. L., Mountjoy C. Q., Roth M., and Iversen L. L. (1982) A postmortem study of the cholinergic and GABA systems in senile dementia.Brain 105, 313–330.

    Article  Google Scholar 

  • Rouser G. and Yamamoto A. (1969) Lipids,Handbook of Neurochemistry (Lajtha A., ed.), pp. 121–169, Plenum, New York.

    Google Scholar 

  • Rouser G., Kritchevsky G., Yamamoto A., and Baxter C. F. (1972) Lipids in the nervous system of different species as a function of age: Brain, spinal cord, peripheral nerve, purified whole cell preparations, and subcellular particulates: Regulatory mechanisms and membrane structure.Adv. Lipid Res. 10, 261–360.

    CAS  Google Scholar 

  • Sakakihara Y. and Volpe J. J. (1984) Dolichol deposition in developing mammalian brain: Content of free and fatty-acylated dolichol and proportion of specific isoprenologues.Dev. Brain Res. 14, 255–262.

    Article  CAS  Google Scholar 

  • Sakakihara Y. and Volpe J. J. (1985) Dolichol in human brain: Regional and developmental aspects.J. Neurochem. 44, 1535–1540.

    Article  PubMed  CAS  Google Scholar 

  • Sastry P. S. (1985) Lipids of nervous tissue: Composition and metabolism.Prog. Lipid Res. 24, 69–176.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder F. (1984) Role of membrane lipid asymmetry in aging.Neurobiol. Aging 5, 323–333.

    Article  PubMed  CAS  Google Scholar 

  • Scott B. S., Becker L. E., and Petit T. L. (1983) Neurobiology of Down’s syndrome.Prog. Neurobiol. 21, 199–237.

    Article  PubMed  CAS  Google Scholar 

  • Shah S. N. (1979) Fatty acid composition of lipids of human myelin and synaptosomes: Changes in phenylketonuria and Down’s syndrome.Int. J. Biochem. 10, 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Sinet P. M. (1982) Metabolism of oxygen derivatives in Down’s syndrome.Ann. NY Acad. Sci. 396, 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Sinex F. M. and Merrill C. R. (eds.) (1982) Alzheimer’s disease, Down’s syndrome and aging.Ann. NY Acad. Sci. 396.

  • Sohal R. S. and Wolfe L. S. (1986) Lipofuscin: Characteristics and significance.Prog. Brain Res. 70, 171–183.

    Article  PubMed  CAS  Google Scholar 

  • Stephens M. C. and Menkes J. H. (1969) Cerebral lipids in Down’s syndrome.Dev. Med. Child Neurol. 11, 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Stokes C. E. and Hawthorne J. N. (1987) Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains.J. Neurochem. 48, 1018–1021.

    Article  PubMed  CAS  Google Scholar 

  • Struck D. K. and Lennarz W. J. (1980) The function of saccharide-lipids in synthesis of glycoproteins,The Biochemistry of Glycoproteins and Proteoglycans (Lennarz W. J., ed.), pp. 35–73, Plenum, New York.

    Google Scholar 

  • Sun G. Y. (1973) Phospholipids and acyl groups in subcellular fractions from human cerebral cortex.J. Lipid Res. 14, 656–663.

    PubMed  CAS  Google Scholar 

  • Sun G. Y. and Foudin L. L. (1985) Phospholipid composition and metabolism in the developing and aging nervous system,Phospholipids in Nervous Tissue (Eichberg J., ed.), pp. 79–124, Wiley, New York.

    Google Scholar 

  • Svennerholm L. (1968) Distribution and fatty acid composition of phosphoglycerides in normal human brain.J. Lipid Res. 9, 570–579.

    PubMed  CAS  Google Scholar 

  • Svennerholm L., Vanier M.-T., and Jungbjer B. (1978) Changes in fatty acid composition of human brain myelin lipids during maturation.J. Neurochem. 30, 1383–1390.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson B. E. (1980) The structural and quantitative aspects of the dementias,Biochemistry of Dementia (Roberts P. J., ed.), pp. 25–52, Wiley, New York.

    Google Scholar 

  • Tsuchida M., Miura T., and Aibara K. (1987) Lipofuscin and lipofuscin-like substances.Chem. Physics Lipids 44, 297–325.

    Article  CAS  Google Scholar 

  • Walford R. L. (1980) Immunology and aging.Am. J. Clin. Pathol. 74, 247–253.

    PubMed  CAS  Google Scholar 

  • Walton J. R. and Packer L. (1980) Free radical damage and protection: Relationship to cellular aging and cancer,Vitamin E: A Comprehensive Treatise (Machlin J., ed.), pp. 495–517, Dekker, New York.

    Google Scholar 

  • West C. D. (1979). A quantitative study of lipofuscin accumulation with age in normals and individuals with Down’s syndrome, phenylketonuria, progeria and transneuronal atrophy.J. Comp. Neurol. 186, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski K. E., Wisniewski H. M., and Wen G. Y. (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome.Ann. Neurol. 17, 278–282.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe L. S., Ng Ying Kin N. M. K., and Baker R. R. (1981) Batten disease and related disorders: New findings on the chemistry of the storage material,Lysosomes and Lysosomal Storage Diseases (Callahan J. W. and Lowden J. A., eds.), pp. 315–330, Raven, New York.

    Google Scholar 

  • Wolfe L. S., Ng Ying Kin N. M. K., Palo J., and Haltia M. (1983) Dolichols in brain and urinary sediment in neuronal ceroid lipofuscinosis.Neurology 33, 103–106.

    PubMed  CAS  Google Scholar 

  • Wolfe L. S., Ng Ying Kin N. M. K., Palo J., Bergeron C., Kotila M., and Varonen S. (1985) Dolichols are elevated in brain tissue from Alzheimer’s disease, but not in urinary sediment from Alzheimer’s disease and Down’s syndrome.Neurochem. Pathol. 3, 213–221.

    PubMed  CAS  Google Scholar 

  • Wurtman R. J., Blusztajn J. K., and Maire J.-C. (1985) ‘Autocannibalism’ of choline-containing phospholipids in the pathogenesis of Alzheimer’s disease: A hypothesis.Neurochem. Int. 7, 369–372.

    Article  CAS  PubMed  Google Scholar 

  • Yates C. M., Simpson J., Cordon A., Maloney A. F. J., Allison Y., Ritchie I. M., Urquhart A. (1983) Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down’s syndrome.Brain Res. 280, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Zubenko E. S. (1986) Hippocampal membrane alteration in Alzheimer’s disease.Brain Res. 385, 115–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooksbank, B.W.L., Martinez, M. Lipid abnormalities in the brain in adult Down’s syndrome and Alzheimer’s disease. Molecular and Chemical Neuropathology 11, 157–185 (1989). https://doi.org/10.1007/BF03160049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160049

Index Entries

Navigation