Skip to main content
Log in

Effects of dietary fats on fatty acid composition and Δ5 desaturase in normal and diabetic rats

  • Published:
Lipids

Abstract

We have studied the effect of various diets on the phospholipid fatty acid composition andin vitro Δ5 desaturase activity of hepatic microsomes derived either from the normal or streptozotocin-induced diabetic rat. The diets studied were the standard rat chow diet and a basal fat-free diet supplemented either with 20 percent saturated fat, 20 percent unsaturated fat, or 20 percent menhaden oil. Phospholipid fatty acid composition analysis revealed that the normal rat fed the saturated fat or menhaden oil diet had significantly decreased arachidonate levels, consistent with decreased Δ5 desaturase activities and decreased 18∶2n−6 intake. On the contrary, the unsaturated fat diet decreased dihomo-γ-linolenate and increased arachidonate levels, without increased Δ5 desaturase activity. Streptozotocininduced diabetes resulted in decreased arachidonate and Δ5 desaturase activity. The unsaturated fat diet fed to the diabetic rat also failed to correct this decreased Δ5 desaturase activity. The unsaturated fatty acids in this diet also displaced a substantial amount of n−3 fatty acids in both normal and diabetic microsomes, due to the competition between these two fatty acid families for incorporation into the membrane phospholipids. Conversely, the menhaden oil diet fed to the normal and diabetic rats displaced n−6 fatty acids, reduced Δ5 desaturase activity, and enhanced 22∶6n−3 incorporation into diabetic microsomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AgNO3 :

silver nitrate

ANOVA:

analysis of variance

ATP:

adenosine triphosphate

GLC-MS:

gas-liquid chromatography-mass spectrometry

KOH:

potassium hydroxide

NADH:

nicotinamide adenine dinucleotide

PZI:

protamine zinc insulin

TLC:

thin-layer chromatography

References

  1. Gellhorn, A., and Benjamin, W. (1964)Biochim. Biophys. Acta 84, 167–175.

    PubMed  CAS  Google Scholar 

  2. Mercuri, O., Peluffo, R.V., and Brenner, R.R. (1967)Lipids 2, 284–285.

    Article  CAS  PubMed  Google Scholar 

  3. Eck, M.G., Wynn, J.O., Carter, W.J., and Faas, F.H. (1979)Dabetes 28, 479–485.

    CAS  Google Scholar 

  4. Faas, F.H., and Carter, W.J. (1980)Lipids 15, 953–961.

    Article  CAS  Google Scholar 

  5. Huang, Y.S., Horrobin, D.F., Manku, M.S., Mitchell, J., and Ryan, M.A. (1984)Lipids 19, 367–370.

    Article  PubMed  CAS  Google Scholar 

  6. Holman, R.T., Johnson, S.B., Gerrard, J.M., Mauer, M.S., Kupcho-Sandberg, S., and Brown, D.M. (1983)Proc. Natl. Acad. Sci. USA 80, 2375–2379.

    Article  PubMed  CAS  Google Scholar 

  7. Faas, F.H., and Carter, W.J. (1983)Lipids 18, 339–342.

    PubMed  CAS  Google Scholar 

  8. Wilder, P.J., and Coniglio, J.G. (1984)Proc. Soc. Exp. Biol. Med. 177, 399–405.

    PubMed  CAS  Google Scholar 

  9. Poisson, J.P. (1985)Enzyme 34, 1–14.

    PubMed  CAS  Google Scholar 

  10. Brenner, R.R. (1981)Prog. Lipid Res. 20, 41–47.

    Article  PubMed  CAS  Google Scholar 

  11. deGomez-Dumm, I.N.T., Alaniz, M.J.T., and Brenner, R.R. (1983)Lipids 18, 781–788.

    CAS  Google Scholar 

  12. Jeffcoat, R., and James, A.T. (1977)Lipids 12, 469–474.

    PubMed  CAS  Google Scholar 

  13. Pugh, E.L., and Kates, N. (1984)Lipids, 1, 48–55.

    Google Scholar 

  14. Kirstein, D., Hoy, C.E., and Holmer, G. (1983)Brit. J. Nutrition 50, 749–756.

    Article  CAS  Google Scholar 

  15. Garg, M.L., Thomson, A.B.R., and Clandinin, M.T. (1988)J. Nutrition 118, 661–668.

    CAS  Google Scholar 

  16. Garg, M., Sebokova, E., Thomson, A.B.R., and Clandinin, M.T. (1988)Biochem. J. 249, 354–356.

    Google Scholar 

  17. Von Lossonczy, T.O., Ruiter, A., Bronsgeest-Schoute, H.C., van Gent, C.M., and Hermus, R.J.J. (1978)Am. J. Clin. Nutr. 31, 1340–1346.

    Google Scholar 

  18. Bronsgeest-Schoute, H.C., van Gent, C.M., Luten, J.B., and Ruiter, A. (1981)Am. J. Clin. Nutr. 34, 1752–1757.

    PubMed  CAS  Google Scholar 

  19. Harris, W.S., Connor, W.E., and McMurry, M.P. (1983)Metabolism 32, 179–184.

    Article  PubMed  CAS  Google Scholar 

  20. Phillipson, B.E., Rothcrock, D.W., Connor, W.E., Harris, W.S., and Illingworth, R. (1985)N. Engl. J. Med. 312, 1210–1216.

    Article  PubMed  CAS  Google Scholar 

  21. Hartree, E.F. (1972)Anal. Biochem. 48, 422–427.

    Article  PubMed  CAS  Google Scholar 

  22. Yamaoka, K., Okayasu, T., and Ishibashi, T. (1986)Hokkaido Igaku Zasshi 61, 755–765.

    PubMed  CAS  Google Scholar 

  23. Faas, F.H., Carter, W.J., and Wynn, J.O. (1972)Endocrinology 91, 1481–1492.

    Article  PubMed  CAS  Google Scholar 

  24. Brenner, R.R., Garda, H., deGomez Dumm, I.N.T., and Pezzano, H. (1981)Prog. Lipid Res. 20, 315–321.

    Article  PubMed  CAS  Google Scholar 

  25. Leikin, A.I., and Brenner, R.R. (1987)Biochim. Biophys. Acta 922, 294–303.

    PubMed  CAS  Google Scholar 

  26. Boustani, S.E., Causse, J.E., Descomps, B., Monnier, L., Mendy, F., and dePaulet, A.C. (1989)Metabolism 38, 315–321.

    Article  PubMed  Google Scholar 

  27. Dang, A.Q., Faas, F.H., and Carter, W.J. (1984)Lipids 19, 738–748.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dang, A.Q., Kemp, K., Faas, F.H. et al. Effects of dietary fats on fatty acid composition and Δ5 desaturase in normal and diabetic rats. Lipids 24, 882–889 (1989). https://doi.org/10.1007/BF02535763

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535763

Keywords

Navigation