Skip to main content
Log in

Analysis of cardiac membrane phospholipid peroxidation kinetics as malondialdehyde: Nonspecificity of thiobarbituric acid-reactivity

  • Published:
Lipids

Abstract

When exposed to xanthine oxidase (superoxide)-dependent, iron-promoted Fenton chemistry, purified cardiac membranes evidenced, by the thiobarbituric acid (TBA) test, a virtually instantaneous peroxidative response with a maximal linear rate of 5.8 nmol malondialdehyde (MDA)-equivalents/mEquivalents lipid ester reacted/min. Yet when the lipids purified from these same membranes and reconstituted into liposomes were peroxidized under identical reaction conditions, the TBA test indicated that a pronounced (∼20-min) lag period preceded a maximal peroxidation rate of only 2.1 nmol MDA-equivalents/ mEquivalents lipid ester reacted/min. After 120 min of peroxidation, the cardiac membranes yielded some 300 nmol TBA-reactive MDA-equivalents/mEquivalent ester, whereas the isolated membrane lipids evidenced ∼40% less TBA-reactivity. To verify that these quantitative and kinetic differences in membrane (phospho)-lipid peroxidation occurred with removal of the lipids from their membrane milieu, the MDA produced during both cardiac membrane peroxidation and the peroxidation of the lipids derived therefrom was isolated as its free anion by ion-pair high-pressure liquid chromatography. As quantified spectrophotometrically, true MDA production during myocardial membrane peroxidation was identical in kinetics and in amount to the production of TBA-reactive substance from the peroxidized isolated membrane lipids. These results demonstrate that significant non-MDA. TBA-reactive species are generated during the peroxidation of cardiac membranes, especially before the maximal rates of bona fide MDA production. As a direct consequence, artifactual levels and kinetics of membrane lipid peroxidation do result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HEPES:

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

MDA:

malondialdehyde

O -2 :

superoxide anion radical

SOD:

superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1)

TBA:

thiobarbituric acid

Tris:

tris(hydroxymethyl)-aminomethane

XOD:

xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.2.3.2)

HPLC:

high pressure liquid chromatography

References

  1. Janero, D.R., and Burghardt, B. (1987)J. Am. Oil Chem. Soc. 44, 667–668.

    Google Scholar 

  2. Jackson, C.V., Mickelson, J.K., Pope, T.K., Rao, P.S., and Lucchesi, B.R. (1986)Am. J. Physiol. 251, H1225-H1231.

    PubMed  CAS  Google Scholar 

  3. Nair, V., and Turner, G.A. (1984)Lipids 19, 804–805.

    Article  CAS  Google Scholar 

  4. Gutteridge, J.M.C. (1981)JEBS Lett. 128, 343–346.

    Article  CAS  Google Scholar 

  5. Warso, M.A., and Lands, W.E.M. (1984)Clin. Physiol. Biochem. 2, 70–77.

    PubMed  CAS  Google Scholar 

  6. Asakawa, T., and Matsushita, S. (1979)Lipids 14, 401–406.

    Article  CAS  Google Scholar 

  7. Kramer, J.H., Mak, I.T., and Weglicki, W.B. (1984)Circ. Res. 55, 120–124.

    PubMed  CAS  Google Scholar 

  8. Herbaczynska-Cedro, K., and Gordon-Majszak, W. (1986)Pharmacol. Res. Commun. 18, 321–332.

    Article  PubMed  CAS  Google Scholar 

  9. St. Louis, P.J., and Sulakhe, P.V. (1976)Int. J. Biochem. 1, 547–558.

    Article  Google Scholar 

  10. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  11. Janero, D.R., and Barrnett, R. (1981)Anal. Biochem. 111, 283–290.

    Article  PubMed  CAS  Google Scholar 

  12. Brockerhoff, H. (1963)J. Lipid Res. 4, 96–99.

    PubMed  CAS  Google Scholar 

  13. Juaneda, P., and Rocquelin, G. (1985)Lipids 20, 40–41.

    Article  PubMed  CAS  Google Scholar 

  14. Janero, D.R., and Barrnett, R. (1981)J. Chromatogr. 216, 417–422.

    Article  CAS  Google Scholar 

  15. Letters, R. (1964)Biochem. J. 93, 313–316.

    PubMed  CAS  Google Scholar 

  16. Skidmore, W.D., and Entenman, C. (1962)J. Lipid Res. 3, 356–363.

    CAS  Google Scholar 

  17. Watson, B.D., Busto, R., Goldberg, W.J., Santiso, M., Yoshida, S., and Ginsberg, M.D. (1984)J. Neurochem. 42, 268–274.

    Article  PubMed  CAS  Google Scholar 

  18. Chan, H.W.-S., and Levett, G. (1976)Lipids 12, 99–104.

    Article  Google Scholar 

  19. Bernheim, F., Bernheim, M.L.C., and Wilbur, K.M. (1948)J. Biol. Chem. 74, 257–264.

    Google Scholar 

  20. Janero, D.R., and Burghardt, B. (1986)J. Am. Oil Chem. Soc. 63, 476–477.

    Google Scholar 

  21. Bull, A.W., and Marnett, L.J. (1985)Anal. Biochem. 149, 284–290.

    Article  PubMed  CAS  Google Scholar 

  22. Esterbauer, H., Lang, J., Zadravec, S., and Slater, T.F. (1984)Meth. Enzymol. 105, 319–328.

    PubMed  CAS  Google Scholar 

  23. Lee, H.-S., and Csallany, A.S. (1987)Lipids 22, 104–107.

    Article  PubMed  CAS  Google Scholar 

  24. Pierce, J., and Suelter, C.H. (1977)Anal. Biochem. 81, 478–480.

    Article  PubMed  CAS  Google Scholar 

  25. Wheeldon, L.W., Schumert, Z., and Turner, D.A. (1965)J. Lipid Res. 6, 481–489.

    PubMed  CAS  Google Scholar 

  26. Jaqua-Stewart, M.J., Read, W.O., and Steffen, R.P. (1979)Anal. Biochem. 96, 293–297.

    Article  PubMed  CAS  Google Scholar 

  27. Page, E., McGallister, L.P., and Power, B. (1971)Proc. Natl. Acad. Sci. USA 68, 1465–1466.

    Article  PubMed  CAS  Google Scholar 

  28. Janero, D.R., and Burghardt, B. (1986)Fed. Proc. 45, 1808.

    Google Scholar 

  29. Massey, V., Komai, H., Palmer, G., and Elion, G.B. (1970)J. Biol. Chem. 245, 2837–2844.

    PubMed  CAS  Google Scholar 

  30. Laub, R., Schneider, Y.-J., Octane, J.-N., Touet, A., and Chrichton, R.R. (1985)Biochem. Pharmac. 34, 1175–1183.

    Article  CAS  Google Scholar 

  31. McCay, P.B. (1985)Ann. Rev. Nutr. 5, 323–340.

    Article  CAS  Google Scholar 

  32. McCord, J.M., and Fridovich, I. (1969)J. Biol. Chem. 244, 6049–6055.

    PubMed  CAS  Google Scholar 

  33. Esterbauer, H., and Slater, T.F. (1981)IRCS Med. Sci. Libr. Compend. 9, 749–750.

    CAS  Google Scholar 

  34. Kakuda, Y., Stanley, D.W., and van de Voort, F.R. (1981)J. Am. Oil Chem. Soc. 58, 773–775.

    CAS  Google Scholar 

  35. Csallany, A.S., Guan, M.D., Manwaring, J.D., and Addis, P.B. (1984)Anal. Biochem. 142, 277–283.

    Article  PubMed  CAS  Google Scholar 

  36. Gray, J.I. (1978)J. Am. Oil Chem. Soc. 55, 539–546.

    CAS  Google Scholar 

  37. Warren, L. (1959)J. Biol. Chem. 234, 1971–1975.

    PubMed  CAS  Google Scholar 

  38. Tsuchihashi, H., Sasaki, M., and Nargatomo, T. (1986)Biochem. Med. Metab. Biol. 36, 36–44.

    Article  PubMed  CAS  Google Scholar 

  39. Schauer, R. (1978)Meth. Enzymol. 50, 64–89.

    PubMed  CAS  Google Scholar 

  40. Skoza, L., and Mohos, S. (1976)Biochem. J. 159, 457–462.

    PubMed  CAS  Google Scholar 

  41. Kobata, A. (1979)Anal. Biochem. 100, 1–14.

    Article  PubMed  CAS  Google Scholar 

  42. Gutteridge, J.M.C. (1977)Anal. Biochem. 82, 76–82.

    Article  PubMed  CAS  Google Scholar 

  43. Warso, M.A., and Lands, W.E.M. (1985)J. Clin. Invest. 75, 667–671.

    Article  PubMed  CAS  Google Scholar 

  44. Jain, S.K. (1984)J. Biol. Chem. 259, 3391–3394.

    PubMed  CAS  Google Scholar 

  45. Beppu, M., and Kikugawa, K. (1987)Lipids 22, 312–317.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Janero, D.R., Burghardt, B. Analysis of cardiac membrane phospholipid peroxidation kinetics as malondialdehyde: Nonspecificity of thiobarbituric acid-reactivity. Lipids 23, 452–458 (1988). https://doi.org/10.1007/BF02535519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535519

Keywords

Navigation