Skip to main content
Log in

Metabolism of malonaldehyde in vivo and in vitro

  • Published:
Lipids

Abstract

The metabolism of malonaldehyde (MA) was investigated in vivo using male Wistar rats and in vitro using rat liver mitochondria. Twelve hr after intubation with [1,3-14C] MA, 60–70%, 5–15% and 9–17% of administered radioactivity was recovered in expired CO2, feces and urine, respectively. In rats intubated with [1,2-14C] acetate, the corresponding values were 68–82%, 1–2% and 2–3%.14CO2 evolution was initially slower after14C-MA administration than after14C-acetate administration and more radioactivity was excreted in the feces and urine. In vitro experiments using [1,3-14C] MA showed that MA is metabolized primarily in the mitochondria via reactions involving O2 utilization and14CO2 production. The apparent Km and Vmax were 0.5 mM and 9.3 nmol/min/mg protein for O2 uptake, respectively, and 2.0 mM and 2.4 nmol/min/mg protein for14CO2 production. Addition of malonic acid to mitochondrial incubates at concentrations inhibitory to succinate dehydrogenase did not affect MA-induced O2 uptake but enhanced14CO2 production from14C-MA.14C-Acetate appeared to be the major accumulating metabolite in rat liver mitochondrial preparations following a 120-min incubation with14C-MA. A probable biochemical route for MA metabolism involves oxidation of MA by mitochondrial aldehyde dehydrogenase followed by decarboxylation to produce CO2 and acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dahle, L.K., Hill, E.G., and Holman, R.T. (1962) Arch. Biochem. Biophys. 98, 253–261.

    Article  PubMed  CAS  Google Scholar 

  2. Pryor, W.A., and Stanley, J.P. (1975) J. Org. Chem. 40, 3615–3617.

    Article  PubMed  CAS  Google Scholar 

  3. Shamberger, R.J., Shamberger, B.A., and Willis, C.E. (1977) J. Nutr. 107, 1404–1409.

    PubMed  CAS  Google Scholar 

  4. Siu, G.M., and Draper, H.H. (1978) J. Food Sci. 43, 1147–1149.

    Article  CAS  Google Scholar 

  5. Shin, B.C., Huggins, J.W., and Carraway, K.L. (1972) Lipids 7, 229–233.

    Article  PubMed  CAS  Google Scholar 

  6. Chio, K.S., and Tappel, A.L. (1969) Biochemistry 8, 2827–2832.

    Article  PubMed  CAS  Google Scholar 

  7. Brooks, B.R., and Klamerth, O.L. (1968) Eur. J. Biochem. 5, 178–182.

    Article  PubMed  CAS  Google Scholar 

  8. Reiss, U., Tappel, A.L., and Chio, K.S. (1972) Biochem. Biophys. Res. Commun. 48, 921–926.

    Article  PubMed  CAS  Google Scholar 

  9. Bird, R.P., and Draper, H.H. (1980) J. Toxicol. Environ. Health 6, 811–823.

    Article  PubMed  CAS  Google Scholar 

  10. Mukai, F.H., and Goldstein, B.D. (1976) Science 191, 868–869.

    Article  PubMed  CAS  Google Scholar 

  11. Shamberger, R.J., Corlett, C.L., Beaman, K.D., and Kasten, B.L. (1979) Mutation Res. 66, 349–355.

    Article  PubMed  CAS  Google Scholar 

  12. Bird, R.P., and Draper, H.H. (1979) Fed. Proc. 38, 709.

    Google Scholar 

  13. Shamberger, R.J., Andreone, T.L., and Williss, C.E. (1974) J. Natl. Cancer Inst. 53, 1771–1773.

    PubMed  CAS  Google Scholar 

  14. Bird, R.P., Draper, H.H., and Valli, V.E.O. (1981) Proc. Can. Fed. Biol. Soc., p. 301 (abstract).

  15. Holtkamp, D.E., and Hill, R.M. (1951) Arch. Biochem. Biophys. 34, 216–219.

    Article  CAS  Google Scholar 

  16. Recknagel, R.O., and Ghoshal, A.K. (1966) Lab Invest. 15, 132–146.

    PubMed  CAS  Google Scholar 

  17. Placer, Z., Veselkova, A., and Rath, R. (1965) Experientia 21, 19–20.

    Article  PubMed  CAS  Google Scholar 

  18. Horton, A.A., and Packer, L. (1970) J. Gerontol. 25, 199–204.

    PubMed  CAS  Google Scholar 

  19. Protopopova, T.V., and Skoldinov, A.P. (1958) J. Gen. Chem. U.S.S.R. 28, 341–243.

    Google Scholar 

  20. Kwon, T.W., and Watts, B.M. (1963) J. Food Sci. 28, 627–630.

    Article  CAS  Google Scholar 

  21. Case, G.L., and Benevenga, N.J. (1976) J. Nutr. 106, 1721–1736.

    PubMed  CAS  Google Scholar 

  22. Chappell, J.B., and Hansford, R.G. (1972) in Subcellular Components (Birnie, G.D., ed.) p. 74, Butterworth & Co. Ltd., Woburn, MA.

    Google Scholar 

  23. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  24. Sinnhuber, R.O., and Yu, T.C. (1958) Food Technol. 12, 9–12.

    CAS  Google Scholar 

  25. LaNoue, K., Nicklas, W.J., and Williamson, J.R. (1970) J. Biol. Chem. 245, 102–111.

    PubMed  CAS  Google Scholar 

  26. Horton, A.A., and Barrett, M.C. (1975) Arch. Biochem. Biophys. 167, 426–436.

    Article  PubMed  CAS  Google Scholar 

  27. Chance, B., and Williams, G.R. (1955) J. Biol. Chem. 217, 383–393.

    PubMed  CAS  Google Scholar 

  28. Deitrich, R.A. (1966) Biochem. Pharmacol. 15, 1911–1922.

    Article  PubMed  CAS  Google Scholar 

  29. Menon, G.K.K., Stern, J.R., Kupiecki, F.P., and Coon, M.J. (1960) Biochim. Biophys. Acta 44, 602–604.

    Article  PubMed  CAS  Google Scholar 

  30. Marnett, L.J., and Tuttle, M.A. (1980) Cancer Res. 40, 276–282.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Siu, G.M., Draper, H.H. Metabolism of malonaldehyde in vivo and in vitro. Lipids 17, 349–355 (1982). https://doi.org/10.1007/BF02535193

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535193

Keywords

Navigation