Skip to main content
Log in

Stimulatory effects of opioids on transmitter release and possible cellular mechanisms: Overview and original results

  • Simulatory EfFects of Opioids
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Opiates and opioid peptides carry out their regulatory effects mainly by inhibiting neuronal activity. At the cellular level, opioids block voltage-dependent calcium channels, activate potassium channels and inhibit adenylate cyclase, thus reducing neurotransmitter release. An increasing body of evidence indicates an additional opposite, stimulatory activity of opioids. The present review summarizes the potentiating effects of opioids on transmitter release and the possible cellular events underlying this potentiation: elevation of cytosolic calcium level (by either activating Ca2+ influx or mobilizing intracellular stores), blockage of K+ channels and stimulation of adenylate cyclase. Biochemical, pharmacological and molecular biology studies suggest several molecular mechanisms of the bimodal activity of opioids, including the coupling of opioid receptors to various GTP-binding proteins, the involvement of different subunits of these proteins, and the activation of several intracellular signal transduction pathways. Among the many experimental preparations used to study the bimodal opioid activity, the SK-N-SH neuroblastoma cell line is presented here as a suitable model for studying the complete chain of events leading from binding to receptors down to regulation of transmitter release, and for elucidating the molecular mechanism involved in the stimulatory effects of opioid agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paton, W. D. M. 1957. The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea pig ileum. Br. J. Pharmac. Chemother. 12:119–127.

    Article  CAS  Google Scholar 

  2. Schaumann, W. 1957. Inhibition by morphine of the release of acetylcholine from the intestine of the guinea pig. Br. J. Pharmac. Chemother. 12:115–118.

    Article  CAS  Google Scholar 

  3. Beleslin, D., and Polak, R. I. 1965. Depression by morphine and chloralose of acetylcholine release from the cat's brain. J. Physiol. 117:411–419.

    Google Scholar 

  4. Jhamandas, K., Pinski, C., and Phillis, J. W. 1970. Effects of narcotic analgesics and antagonists on the in vivo release of acetylcholine from the cerebral cortex of the cat. Nature 228:176–177.

    Article  PubMed  CAS  Google Scholar 

  5. Sharkawi, M., and Schulman, M. P. 1969. Inhibition by morphine of the release of [14C] acetylcholine from rat cerebral cortical slices. J. Pharm. Pharmacol. 21:546–547.

    Article  PubMed  CAS  Google Scholar 

  6. Montel, H., Starke, K., and Weber, F. 1974. Influence of morphine and naloxone on the release of noradrenaline from rat brain cortical slices. Naunyn Schmiedebergs Arch. Pharmacol. 283: 357–369.

    Article  PubMed  CAS  Google Scholar 

  7. Werling, L. L., Brown, S. R., and Cox, B. M. 1987. Opioid receptor regulation of the release of norepinephrine in brain. Neuropharmacol. 26:987–996.

    Article  CAS  Google Scholar 

  8. Loh, H. H., Brase, D. A., Sampath-Khanna, S., Mar, J. B., and Way, E. L. 1976. β-endorphine in vitro inhibition of striatal dopamine release. Nature 264:567–568.

    Article  PubMed  CAS  Google Scholar 

  9. Jessel, T. M., and Iversen, L. L. 1977. Oprate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268:549–551.

    Article  Google Scholar 

  10. Iwatsubo, K., and Kondo, Y. 1978. The inhibitory effect of morphine on the release of preloaded3H-GABA from rat substantia nigra in response to stimulation of caudate nucleus and globus pallidus. p. 357in van Ree, J. M. and Terenius L. (eds.), Characteristics and Function of opioids, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  11. Iversen, L. L., Inversen, S. D., and Bloom, F. E. 1980. Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis. Nature 284:350–351.

    Article  PubMed  CAS  Google Scholar 

  12. Ipp, E., Dobbs, R., and Unger, R. H. 1978. Morphine and β-endorphin influence the secretion of the endocrine pancreas. Nature 276:190–191.

    Article  PubMed  CAS  Google Scholar 

  13. Kanter, R. A., Ensinck, J. W., and Fujimoto, W. Y. 1980. Disparate effects of enkephalin and morphine upon insulin and glucagon secretion by islets cell cultures. Diabetes 29:84–86.

    Article  PubMed  CAS  Google Scholar 

  14. Hescheler, R. L., Rosenthal, W., Trautwein, W., and Schultz, G. 1987. The GTP-binding protein G0 regulates neuronal calcium channels. Nature 325:445–447.

    Article  PubMed  CAS  Google Scholar 

  15. Henderson, G., and Seward, E. P. 1990. Inhibition of an N-like calcium channel by mu-opioid receptor activation in the human neuroblastoma cell line, SH-SY5Y. J. Physiol. 422:19P.

    Google Scholar 

  16. MacDonald, R. L., and Werz, M. A. 1986. Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurons. J. Physiol. 377:237–249.

    PubMed  CAS  Google Scholar 

  17. Attali, B., Saya, B., and Vogel, Z. 1989. Kappa opiate agonists inhibit adenylate cyclase and produce heterologous desensitization in rat spinal cord. J. Neurochem. 52:360–369.

    Article  PubMed  CAS  Google Scholar 

  18. Sharma, S. K., Klee, W. A., and Nirenberg, M. 1975. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Porch. Natl. Acad. SCI. USA 72:3092–3096.

    Article  CAS  Google Scholar 

  19. North, R. C. A., William's, J. E. T., Surpenant, A., and Christee, M. J. 1987. Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Porch. Nalt. Acad. SCI. USA 84:5487–5491.

    Article  CAS  Google Scholar 

  20. Phillis, J. W., Mullin, W. J., and Pinski, C. 1973. Morphine enhancement of acetylcholine release into the lateral ventricle and from the cerebral cortex of unanaesthetized cats. Comp. Gen. Pharmacol. 4:189–200.

    Article  PubMed  CAS  Google Scholar 

  21. Mullin, W. J. 1974. Central release of acetylcholine following administration of morphine to unanesthetized rabbits. Canad. J. Physiol. Pharmacol. 52:369–374.

    Article  CAS  Google Scholar 

  22. Fredholm, B. B., and Vernet, L. 1978. Morphine increases depolarization induced purine release from rat cortical slices. Acta Phys. Scand. 104:502–504.

    Article  CAS  Google Scholar 

  23. Vizi, E. S., Harsing, L. G., and Knoll, J. 1977. Presynaptic inhibition leading to disinhibition of acetylcholine release from interneurons of the caudate nucleus: effect of dopamine, β-endorphin and d-ala2-pro5-enkephalinamide. Neurosci. 2:953–961.

    Article  CAS  Google Scholar 

  24. Vizi, E. S., and Volbekas, V. 1980. Inhibition by dopamine of oxytocin release from isolated posterior lobe of the hypophysis of the rat: disinhibitory role of β-endorphine/enkephalin. Neuroendocrinol. 31:46–52.

    Article  CAS  Google Scholar 

  25. Madison, D. V., and Nicoll, R. C. A. 1988. Enkephalin hyperpolarizes interneurones in the rat hippocampus. J. Physiol. 398: 123–130.

    PubMed  CAS  Google Scholar 

  26. Pan, Z. Z., William's, J. E. T., and Osborne, P. B. 1990. Opioid actions on single nucleus raphe magnus neurons from rat and guinea pig in vitro. J. Physiol. 427:519–532.

    PubMed  CAS  Google Scholar 

  27. Xu, H. Smolens, I., and Ginzler, A. R. 1989. Opioids can enhance and inhibit the electrically evoked release of methionineenkephalin. Brain Res. 504:36–42.

    Article  PubMed  CAS  Google Scholar 

  28. Xu, H., and Ginzler, A. R. 1992. Oploid enhancement of evoked [Met5] enkephalin release requires activation of cholinergic receptors: possible involvement of intracellular calcium. Proc. Natl. Acad. Sci. USA 89:1978–1982.

    Article  PubMed  CAS  Google Scholar 

  29. Hirai, K., and Katayama, Y. 1988. Methionine enkephalin presynaptically facilitates and inhibits bullfrog sympathetic ganglionic transmission. Brain Res. 448:299–307.

    Article  PubMed  CAS  Google Scholar 

  30. Mauborgne, A., Lutz, O., Legrand, J. C., Hamon, M., and Cesselin, F. 1987. Opposite effects of δ and μ opioid receptor agonists on the in vitro release of substance P-like material from rat spinal cord. J. Neurochem. 48:529–537.

    Article  PubMed  CAS  Google Scholar 

  31. Longoni, R., Spina, L., Mulas, A., Carboni, E., Garau, L., Melchiorri, P., and DiChiara, G. 1991. D-ala2, deltorphin II: D1-dependent stereotypes and stimulation of dopamine release in the nucleus accumbens. J. Neurosci. 11:1565–1576.

    PubMed  CAS  Google Scholar 

  32. Suarez-Roca, H., and Maxiner, W. 1993. Activation of kappa opioid receptors by U50488H and morphine enhances the release of substance P from rat trigeminal nucleus slices. J. Pharmacol. Exp. Ther. 264:648–653.

    PubMed  CAS  Google Scholar 

  33. Barke, K. E., and Hough, L. B. 1994. Characterization of basal and morphine induced histamine release in the rat periaqueductal gray. J. Neurochem. 63:238–244.

    Article  PubMed  CAS  Google Scholar 

  34. Cahill, C. M., White, T. D., and Sawynok, J. 1993. Morphine activates ω-conotoxin-sensitive Ca2+ channels to release adenosine from spinal cord synaptosomes. J. Neurochem. 60:894–901.

    Article  PubMed  CAS  Google Scholar 

  35. Kapas, S., Pubrick, A., and Hinson, J. P. 1995. Action of opioid peptides on the rat adrenal cortex: stimulation of steroid secretion through a specific μ opioid receptor. J. Endocrin. 144:503–510.

    Article  CAS  Google Scholar 

  36. Michaelson, D. M., McDowall, G., and Sarne, Y. 1984. The Torpedo electric organ is a model for opiate regulation of acetylcholine release. Brain Res. 305:173–176.

    Article  PubMed  CAS  Google Scholar 

  37. Michaelson, D. M., McDowall, G., and Sarne, Y. 1984. Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx. J. Neurochem. 43:614–618.

    Article  PubMed  CAS  Google Scholar 

  38. Oron, L., Sarne, Y., and Michaelson, D. M. 1991. Effect of opioid peptides on electrically evoked acetylcholine release from Torpedo electromotor neurons. Neurosci. Lett. 125:231–234.

    Article  PubMed  CAS  Google Scholar 

  39. Barnea, E. R., Ashkenazy, R., and Sarne, Y. 1991. The effect of dynorphin on placental pulsatile human chorionic gonadotropin secretion in vitro. J. Clin. Endocrinol. Metab. 73:1093–1098.

    Article  PubMed  CAS  Google Scholar 

  40. Barnea, E. R., Askenazy, R., Tal, Y., Kol, S., and Sarne, Y. 1991. Effect of β-endorphin on human chorionic gonadotrophin secretion by placental explants. Human Reprod. 6:1327–1331.

    CAS  Google Scholar 

  41. Yu, V. C., Richards, M. L., and Sadee, W. 1986. A human neuroblastoma cell line expresses mu and delta opioid receptor sites. J. Biol. Chem., 261:1065–1070.

    PubMed  CAS  Google Scholar 

  42. Baumhaker, Y., Gafni, M., Keren, O., and Sarne, Y. 1993. Selective and interactive down-regulation of mu and delta opioid receptors in human neuroblastoma SK-N-SH cells. Mol. Pharmacol. 44:461–467.

    PubMed  CAS  Google Scholar 

  43. Noronha-Blob, L., Gover, R., and Baumgold, J. 1989. Calcium influx mediated by nicotinic receptors and voltage sensitive calcium channels in SK-N-SH human neuroblastoma cells. Biochem. Biophys. Res. Commun. 162:1230–1235.

    Article  PubMed  CAS  Google Scholar 

  44. Richards, M. C., and Sadee, W. 1986. Human neuroblastoma cell line as models of catechol uptake. Brain Res. 384:132–137.

    Article  PubMed  CAS  Google Scholar 

  45. Murphy, N. P., Ball, S. G., and Vaughan, F. T. 1991. Potassium-and carbachol-evoked release of [3H]noradrenaline from human neuroblastoma cells SH-SY5Y. J. Neurochem. 56:1810–1815.

    Article  PubMed  CAS  Google Scholar 

  46. Keren, O., Garty, M., and Sarne, Y. 1994. Dual regulation by opioids of3H-norepinephrine release in the human neuroblastoma cell line SK-N-SH. Brain Res. 646:319–323.

    Article  PubMed  CAS  Google Scholar 

  47. Jin, W., Lee, N. M., Loh, H. H., and Thayer, S. A. 1992. Dual excitatory and inhibitory effects of opioids on intracellular calcium in neuroblastoma × glioma hybrid NG108-15 cells. Mol. Pharmacol. 42:1083–1089.

    PubMed  CAS  Google Scholar 

  48. Tomura, H., Okajima, F., and Kondo, Y. 1992. Enkephaline induces Ca2+ mobilization in single cells of bradykinin-sensitized differentiated neuroblastoma hybridoma (NG108-15) cells. Neurosci. Lett. 148:93–96.

    Article  PubMed  CAS  Google Scholar 

  49. Fields, A., Gafni, M., Oron, Y., and Sarne, Y. 1994. Multiple effects of opiates on intracellular calcium level and on calcium uptake in three neuronal cell lines. Brain Res. 687:94–102.

    Article  Google Scholar 

  50. Tang, T., Kiang, J. G., and Cox, B. M. 1994. Opioids acting through delta receptors elicit a transient increase in the intracellular free calcium concentration in dorsal root ganglion—neu-roblastoma hybrid ND8-47 cells. J. Pharm. Exp. Ther. 270:40–46.

    CAS  Google Scholar 

  51. Connor, M. A., Planner, A., and Henderson, G. 1994. δ And μ opioid receptor mobilization of intracellular calcium in neuroblastoma cells. Regulatory Peptides 54:65–66.

    Article  CAS  Google Scholar 

  52. Tai, K. K., Bian, C. F., and Wong, T. M. 1992. κ-Opioid receptor stimulation increases intracellular free calcium in isolated rat ventricular myocytes. Life SCI. 51:909–913.

    Article  PubMed  CAS  Google Scholar 

  53. Eriksson, P. S., Nilsson, M., Wagberg, M., Hansson, E., and Ronnback, L. 1993. Kappa-opioid receptors on astrocytes stimulate L-type Ca2+ channels. Neurosci. 54:401–407.

    Article  CAS  Google Scholar 

  54. Stiene-Martin, A., Mattson, M. P., and Hauser, K. F. 1993. Opiates selectively increase intracellular calcium in developing type-1 astrocytes: role of calcium in morphine-induced morphologic differentiation. Dev. Brain Res. 76:189–196.

    Article  CAS  Google Scholar 

  55. Higashi, H., Shinnick-Gallagher, P., and Gallagher, J. P. 1982. Morphine enhances and depresses Ca2+-dependent responses in visceral primary afferent neurons. Brain Res. 251:186–191.

    Article  PubMed  CAS  Google Scholar 

  56. Crain, S. M., Shen, K. F., and Chalazonitis, A. 1988. Opioids excite rather than inhibit sensory neurons after chronic opioid exposure of spinal cord ganglion cultures. Brain Res. 455:99–109.

    Article  PubMed  CAS  Google Scholar 

  57. Shen, K. F., and Crain, S. M. 1989. Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res. 491:227–242.

    Article  PubMed  CAS  Google Scholar 

  58. Barr, E., and Leslie, S. W. 1985. Opioid peptides increase calcium uptake by synaptosomes from brain regions. Brain Res. 329:280–284.

    Article  PubMed  CAS  Google Scholar 

  59. Laurent, S., Marsh, J. D., and Smith, T. W. 1986. Enkephalins increase cyclic adenosine monophosphate content, calcium uptake and contractile state in cultured chick embryo heart cells. J. Clin. Invest. 77:1436–1440.

    Article  PubMed  CAS  Google Scholar 

  60. Lorentz, M., Hedlund, B., and Arhem, P. 1988. Morphine activates calcium channels in cloned mouse neuroblastoma cell lines. Brain Res. 445:157–159.

    Article  PubMed  CAS  Google Scholar 

  61. Jin, W., Lee, N. M., Loh, H. H., and Thayer, S. A. 1994. Opioids mobilize calcium from inositol 1,45-triphosphate-sensitive stores in NG108-15 cells. J. Neurosci. 14:1920–1929.

    PubMed  CAS  Google Scholar 

  62. Okajima, F., Tomura, H. and Kondo, Y. 1993. Enkephalin activates the phospholipase C/Ca2+ system through cross-talk between opioid receptors and P2-purinergic or bradykinin receptors in NG108-15 cells. Biochem. J. 290:241–247.

    PubMed  CAS  Google Scholar 

  63. Ventura, C., Spurgeon, H., Lakatta, E. G., Guarnieri, C. and Capogrossi, M. C. 1992. κ And δ opioid receptor stimulation affects cardiac myocyte function and Ca2+ release from an intracellular pool in myocytes and neurons. Circul. Res. 70:66–81.

    Article  CAS  Google Scholar 

  64. Natsuki, R., Hitzemann, R. J. and Loh, H. H. 1979. Influence of morphone, β-endorphin and naloxone on the synthesis of phosphoinositides in the rat midbrain. Res. Comm. Chem. Path. Pharm. 24:233–250.

    CAS  Google Scholar 

  65. Periyasamy, S. and Hoss, W. 1990. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain. Life SCI. 47:219–225.

    Article  PubMed  CAS  Google Scholar 

  66. Barg, J., Belcheva, M. M., Rowinski, J. and Coscia, C. J. 1993. κ-Opioid agonist modulation of [3H]thymidine incorporation into DNA: Evidence for the involvement of pertussis toxin-sensitive G protein-coupled phosphoinositide turnover. J. Neurochem. 60: 1505–1511.

    Article  PubMed  CAS  Google Scholar 

  67. Barg, J., Nah, S. Y., Levy, R., Saya, D. and Vogel, Z. 1993. Modulation of thymidine incorporation by kappa-opioid ligands in rat spinal cord-dorsal root ganglion co-cultures. Brain Res. 629:109–114.

    Article  PubMed  CAS  Google Scholar 

  68. Smart, D., Smith, G., and Lambert, D. G. 1994. μ-Opioid receptor stimulation of inositol (1,4,5) triphosphate formation via a pertussis toxin-sensitive G protein. J. Neurochem. 62:1009–1014.

    Article  PubMed  CAS  Google Scholar 

  69. Smart, D., Smith, G., and Lambert, D. G. 1995. μ-Opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium channel opening. Biochem. J. 305:577–582.

    PubMed  CAS  Google Scholar 

  70. Smart, D., and Lambert, D. G. 1995. Desensitization of the μ-opioid activation of phospholipase C in SH-SY5Y cells: the role of protein kinases C and A and Ca2+-activated K+ currents. Br. J. Pharmacol. 116:2655–2660.

    Article  PubMed  CAS  Google Scholar 

  71. North, R. C. A., and William's, J. E. T. 1983. Opiate activation of potassium conductance inhibits calcium action potentials in rat locus coeruleus neurones. Br. J. Pharmacol. 80:225–228.

    Article  PubMed  CAS  Google Scholar 

  72. Werz, M. A., and McDonald, R. L. 1983. Opioid peptides with differential affinity for mu and delta receptors decrease sensory neuron calcium dependent action potentials. J. Pharmacol. Exp. Ther. 227:394–402.

    PubMed  CAS  Google Scholar 

  73. Davis, J., and Duggan, A. W. 1974. Opiate agonist-antagonist effect on Renshaw cells and spinal interneurons. Nature 250:70–71.

    Article  Google Scholar 

  74. Davis, J. 1976. Effects of morphine and naloxone on Renshaw cells and spinal interneurones in morphine dependent and non-dependent rats. Brain Res. 113:311–326.

    Article  Google Scholar 

  75. Belcher, G., and Ryall, R. W. 1978. Differential excitatory and inhibitory effects of opiates on non-nociceptive and nociceptive neurones in the spinal cord of the cat. Brain Res. 145:303–314.

    Article  PubMed  CAS  Google Scholar 

  76. Fan, S. F., Shen, K. F., and Crain, S. M. 1993. μ And δ opioid agonists at low concentrations decrease voltage dependent K+ currents in F11 neuroblastoma x DRG neuron hybrid cells via cholera toxin sensitive receptors. Brain Res. 605:214–220.

    Article  PubMed  CAS  Google Scholar 

  77. Baraban, S. C., Lothman, E. W., Lee, A., and Guyenet, P. G. 1995. Kappa opioid receptor-mediated suppression of voltage activated potassium current in a catecholaminergic neuronal cell line. J. Pharmacol. Exp. Ther. 273:927–933.

    PubMed  CAS  Google Scholar 

  78. Fan, S. F., and Crain, S. M. 1995. Dual regulation by mu, delta and kappa opioid receptor agonists of K+ conductance of DRG neurons and neuroblastoma x DRG neuron hybrid F11 cells. Brain Res. 696:97–105.

    Article  PubMed  CAS  Google Scholar 

  79. Fan, S. F., Shen, K. F., and Crain, S. M. 1991. Opioids at low concentration decrease opening of K+ channels in sensory ganglion neurons. Brain Res. 558:166–170.

    Article  PubMed  CAS  Google Scholar 

  80. Traber, J., Gullis, R., and Hamprecht, B. 1975. Influence of opiates on the levels of adenosine 3′∶5′ cyclic monophosphate in neuroblastoma x glioma hybrid cells. Life Sci. 16:1863–1868.

    Article  PubMed  CAS  Google Scholar 

  81. Collier, H. O. J., Francis, D. L., McDonald-Gibson, W. J., Roy, A. C., and Saeed, S. A. 1975. Prostaglandins, cyclic AMP and the mechanism of opiate dependence. Life Sci. 17:85–90.

    Article  PubMed  CAS  Google Scholar 

  82. Puri, S. K., Cochin, J., and Volicer, L. 1975. Effect of morphine sulfate on adenylate cyclase and phosphodiesterase activities in rat corpus striatum. Life Sci. 16:759–768.

    Article  PubMed  CAS  Google Scholar 

  83. Lee, A. Y. S., and Wang, T. M. 1987. Effects of dynorphin1–13 on cardiac rhythm and cyclic adenosine monophosphate (cAMP) levels in the isolated perfused rat heart. Neurosci. Lett. 80:289–292.

    Article  PubMed  CAS  Google Scholar 

  84. Makman, M. H., Dvorkin, B., and Crain, S. M. 1988. Modulation of adenylate cyclase activity of mouse spinal cord-ganglion explants by opioids, serotonin and pertussis toxin. Brain Res. 445: 303–313.

    Article  PubMed  CAS  Google Scholar 

  85. Onali, P., and Olianas, M. C. 1991. Naturally occurring opioid receptor agonists stimulate adenylate cyclase activity in rat olfactory bulb. Mol. Pharmacol. 39:436–441.

    PubMed  CAS  Google Scholar 

  86. Olianas, M. C., and Onali, P. 1994. Activation of opioid and muscarinic receptors stimulates basal adenylate cyclase but inhibits Ca2+/calmodulin- and forskolin-stimulated enzyme activities in rat olfactory bulb. J. Neurochem. 63:161–168.

    Article  PubMed  CAS  Google Scholar 

  87. Cruciani, R. A., Dvorkin, B., Morris, S. A., Crain, S. M., and Makman, M. H. 1993. Direct coupling of opioid receptors to both stimulatory and inhibitory guanine nucleotide binding proteins in F11 neuroblastoma sensory neuron hybrid cells. Proc. Natl. Acad. Sci. USA 90:3019–3023.

    Article  PubMed  CAS  Google Scholar 

  88. Wang, L., and Gintzler, A. R. 1994. Bimodal opioid regulation of cyclic AMP formation: implications for positive and negative coupling of opiate receptors to adenylate cyclase. J. Neurochem. 63:1726–1730.

    Article  PubMed  CAS  Google Scholar 

  89. Wang, L., and Gintzler, A. R. 1995. Morphine tolerance and physical dependence: reversal of opioid inhibition to enhancement of cyclic AMP formation. J. Neurochem. 64:1102–1106.

    Article  PubMed  CAS  Google Scholar 

  90. Mehta, C. S., and Strada, S. J. 1994. Effects of acute and continuous administration of morphine on the cyclic AMP response induced by norepinephrine in rat brain slices. Life Sci. 55:35–42.

    Article  PubMed  CAS  Google Scholar 

  91. Periyasamy, S., and Hoss, W. 1991. Inhibition of carbachol stimulated phosphoinositide turnover by U-50,488H in rat hippocampus-involvement of GTP-binding protein. Eur. J. Pharmacol. 207: 101–109.

    Article  PubMed  CAS  Google Scholar 

  92. Beani, L., Bianchi, C., and Siniscalchi, A. 1982. The effect of naloxone on opioid-induced inhibition and facilitation of acetylcholine release in brain slices. Br. J. Pharmacol. 76:393–401.

    Article  PubMed  CAS  Google Scholar 

  93. Suarez-Roca, H., and Maixner, W. 1995. Morphine produces a biphasic modulation of substance P release from cultured dorsal root ganglion neurons. Neurosci. Lett. 194:41–44.

    Article  PubMed  CAS  Google Scholar 

  94. Benoliel, J. J., Collin, E., Mauborgne, A., Bourgoin, S., Legrand, J. C., Hamon, M., and Cesselin, F. 1994. Mu and delta opioid receptors mediate opposite modulations by morphine of the spinal release of cholecystokinin-like material. Brain Res. 653:81–91.

    Article  PubMed  CAS  Google Scholar 

  95. Crain, S. M., and Shen, K. F. 1992. After chronic opioid exposure sensory neurons become supersensitive to the excitatory effects of opioid agonists and antagonists as occurs after acute elevation of GM1 ganglioside. Brain Res. 575:13–24.

    Article  PubMed  CAS  Google Scholar 

  96. Sarne, Y., and Gafni, M. 1996. Determinants of the stimulatory opioid effect on intracellular calcium in SK-N-SH and NG108-15 neuroblastoma. Brain Res. 722:203–206.

    Article  PubMed  CAS  Google Scholar 

  97. McKenzie, F. R., and Milligan, G. 1990. δ-Opioid-receptor-mediated inhibition of adenylate cyclase is transduced specifically by the guanine-nucleotide binding protein Gi2. Biochem. J. 267: 391–398.

    PubMed  CAS  Google Scholar 

  98. Shen, K. F., and Crain, S. M. 1990. Cholera toxin-A subunit blocks opioid excitatory effects on sensory neuron action potentials indicating mediation by Gs-linked opioid receptors. Brain Res. 525:225–231.

    Article  PubMed  CAS  Google Scholar 

  99. Gintzler, A. R., and Xu, H. 1991. Different G proteins mediate the opioid inhibition or enhancement of evoked [5-methionine] enkephalin release. Proc. Natl. Acad. Sci. USA 88:474–475.

    Article  Google Scholar 

  100. Tang, T., Kiang, J. G., Cote, T., and Cox, B. M. 1995. Opioid-induced increase in [Ca2+]i in ND8-47 neuroblastoma x dorsal root ganglion hybrid cells is mediated through G protein-coupled δ-opioid receptors and desensitized by chronic exposure to opioid. J. Neurochem. 65:1612–1621.

    Article  PubMed  CAS  Google Scholar 

  101. Tang, T., Kiang, J. G., Cote, T. E., and Cox, B. M. 1995. Antisense oligodeoxynucleotide to the Gi2 protein α subunit sequence inhibits an opioid-induced increase in the intracellular free calcium concentration in ND8-47 neuroblastoma x dorsal root ganglion hybrid cells. Mol. Pharmacol. 48:189–193.

    PubMed  CAS  Google Scholar 

  102. Tang, W. J., and Gilman, A. G. 1991. Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  103. Tang, W. J., and Gilman, A. G. 1992. Adenylyl cyclases. Cell 70:869–872.

    Article  PubMed  CAS  Google Scholar 

  104. Camps, M., Carozzi, A., Schnabel, P., Scheer, A., Parker, P. J., and Gierschik, P. 1992. Isoenzyme-selective stimulation of phospholipase C-β2 by G protein βγ subunits. Nature 360:684–689.

    Article  PubMed  CAS  Google Scholar 

  105. Olianas, M. C., and Onali, P. 1993. Synergistic interaction of muscarinic and opioid receptors with Gs-linked neurotransmitter receptors to stimulate adenylyl cyclase activity of rat olfactory bulb. J. Neurochem. 61:2183–2190.

    Article  PubMed  CAS  Google Scholar 

  106. Kaneko, S., Nakamura, S., Adachi, K., Akaike, A., and Satoh, M. 1994. Mobilization of intracellular Ca2+ and stimulation of cyclic AMP production by κ opioid receptors expressed in Xenopus oocytes. Mol. Brain Res. 27:258–264.

    Article  PubMed  Google Scholar 

  107. Tsu, R. C., Chan, J. S., and Wong, Y. H. 1995. Regulation of multiple effectors by the cloned δ-opioid receptor: stimulation of phospholipase C and type II adenylyl cyclase. J. Neurochem. 64: 2700–2707.

    Article  PubMed  CAS  Google Scholar 

  108. Birnbaum, A. K., Wotta, D. R., Law, P. Y., and Wilcox, G. L. 1995. Functional expression of adrenergic and opioid receptors in Xenopus oocytes: interaction between α2- and α2-adrenergic receptors. Mol. Brain Res. 28:72–80.

    Article  PubMed  CAS  Google Scholar 

  109. Zimprich, A., Simon, T., and Holt, V. 1995. Transfected rat μ opioid receptors (rMOR1 and rMOR1B) stimulate phospholipase C and Ca2+ mobilization. Neuroreport 7:54–56.

    PubMed  CAS  Google Scholar 

  110. Miyamae, T., Fukushima, N., Misu, Y., and Ueda, H. 1993. δ Opioid receptor mediates phospholipaseC activation via Gi in Xenopus oocytes. FEBS Lett. 333:311–314.

    Article  PubMed  CAS  Google Scholar 

  111. Ueda, H., Miyamae, T., Fukushima, N., Takeshima, H., Fukuda, K., Sasaki, Y., and Misu, Y. 1995. Opioid mu- and kappa-receptors mediate phospholipase C activation through Gi1 in Xenopus oocytes. Mol. Brain Res. 32:166–170.

    Article  PubMed  CAS  Google Scholar 

  112. Chan, J. S. C., Chiu, T. T., and Wong, Y. H. 1995. Activation of type II adenylyl cyclase by the cloned mu-opioid receptor: coupling to multiple G proteins. J. Neurochem. 65:2682–2689.

    Article  PubMed  CAS  Google Scholar 

  113. Chen, G. G., Chalazonitis, A., Shen, K. F., and Crain, S. M. 1988. Inhibitor of cyclic AMP-dependent protein kinase blocks opioid-induced prolongation of the action potential of mouse sensory ganglion neurons in dissociated cell cultures. Brain Res. 462:372–377.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eric J. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarne, Y., Fields, A., Keren, O. et al. Stimulatory effects of opioids on transmitter release and possible cellular mechanisms: Overview and original results. Neurochem Res 21, 1353–1361 (1996). https://doi.org/10.1007/BF02532376

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532376

Key Words

Navigation