Skip to main content
Log in

Genetics of pentose-phosphate pathway enzymes ofEscherichia coli K-12

  • Mini-review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The pentose-phosphate pathway ofEscherichia coli K-12, in addition to its role as a route for the breakdown of sugars such as glucose or pentoses, provides the cell with intermediates for the anabolism of amino acids, vitamins, nucleotides, and cell wall constituents. Through its oxidative branch, it is a major source of NADPH. The expression of the gene for NADP-dependent 6-phospho-gluconate dehydrogenase (gnd) is regulated by the growth rate inE. coli. The recently identified gene for ribulose-5-phosphate 3-epimerase (rpe) is part of a large operon that comprises among others genes for the biosynthesis of aromatic amino acids. In recent years, genes for all enzymes of the pathway have been cloned and sequenced. Isoenzymes have been found for transketolase (genestktA andtktB), ribose-5-phosphate isomerase (rpiA andrpiB) and transaldolase (talA andtalB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apel TW, Scherer A, Adachi T, Auch D, Ayane M, Reth M (1995) The ribose 5-phosphate isomerase-encoding gene is located immediately downstream from that encoding murine immunoglobulin k. Gene 156:191–197

    Article  PubMed  CAS  Google Scholar 

  • Bachmann BJ (1990) Linkage map ofEscherichia coli K-12, edn 8. Microbiol Rev 54:130–197

    PubMed  CAS  Google Scholar 

  • Baker JV, II, Wolf RE Jr (1983) Growth rate-dependent regulation of 6-phosphogluconate dehydrogenase level inEscherichia coli K-12: β-galactosidase expression ingnd-lac operon fusion strains. J Bacteriol 153:771–781

    PubMed  CAS  Google Scholar 

  • Baker HV, II, Wolf RE Jr (1984) Essential site for growth rate-dependent regulation within theEscherichia coli gnd structural gene. Proc Natl Acad Sci USA 81:7669–7673

    Article  PubMed  CAS  Google Scholar 

  • Barcak GJ, Wolf RE Jr (1988) Comparative nucleotide sequence analysis of growth rate-regulatedgnd alleles from natural isolates ofEscherichia coli and fromSalmonella typhimurium LT-2. J Bacteriol 170:372–379

    PubMed  CAS  Google Scholar 

  • Belyaeva T, Griffiths L, Minchin S, Cole J, Busby S (1993) TheEscherichia coli cysG promoter belongs to the “extended-10” class of bacterial promoters. Biochem J 296:851–857

    PubMed  CAS  Google Scholar 

  • Blattner FR, Burland V, Plunkett G III, Sofia HJ, Daniels DL (1993) Analysis of theEscherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res 21:5408–5417

    PubMed  CAS  Google Scholar 

  • Burland V, Plunkett G III, Sofia HJ, Daniels DL, Blattner FR (1995) Analysis of theEscherichia coli genome. VI. DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res 23:2105–2119

    PubMed  CAS  Google Scholar 

  • Carter-Muenchau P, Wolf RE Jr (1989) Growth-rate-dependent regulation of 6-phosphogluconate dehydrogenase level mediated by an anti-Shine-Dalgarno sequence located within theEscherichia coli gnd structural gene. Proc Natl Acad Sci USA 86:1138–1142

    Article  PubMed  CAS  Google Scholar 

  • David J, Wiesmeyer H (1970) Regulation of ribose metabolism inE. coli. II. Evidence for two ribose 5-phosphate isomerase activities. Biochim Biophys Acta 208:56–67

    PubMed  CAS  Google Scholar 

  • Draths KM, Frost JW (1990) Synthesis using plasmid-based biocatalysis: plasmid assembly and 3-deoxy-d-arabino-heptulosonate production. J Am Chem Soc 112:1657–1659

    Article  CAS  Google Scholar 

  • Eidels L, Osborn MJ (1971) Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants ofSalmonella typhimurium. Proc Natl Acad Sci USA 68:1673–1677

    Article  PubMed  CAS  Google Scholar 

  • Essenberg MK, Cooper RA (1975) Two ribose-5-phosphate isomerases fromEscherichia coli K-12: partial characterization of the enzymes and consideration of their possible physiological roles. Eur J Biochem 55:323–332

    Article  PubMed  CAS  Google Scholar 

  • Falcone DL, Tabita FR (1993) Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bis-phosphate carboxylase-oxygenase deletion strain ofRhodospirillum rubrum. J Bacteriol 175:5066–5077

    PubMed  CAS  Google Scholar 

  • Feldmann SD, Sahm H, Sprenger GA (1992) Pentose metabolism inZymomonas mobilis wild-type and recombinant strains. Appl Microbiol Biotechnol 38:354–361

    Article  CAS  Google Scholar 

  • Fraenkel DG (1968) Selection ofEscherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase. J Bacteriol 95:1267–1271

    PubMed  CAS  Google Scholar 

  • Fraenkel DG (1987) Glycolysis, pentose phosphate pathway, and Entner-Doudoroff pathway. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds)Escherichia coli andSalmonella typhimurium: cellular and molecular biology, vol 1. American Society for Microbiology, Washington, D.C., pp. 142–150

    Google Scholar 

  • Frost JW (1992) Enhanced production of common aromatic pathway compounds. U.S. patent No. 5,168,056

  • Hove-Jensen B, Maigaard M (1993)Escherichia coli rpiA gene encoding ribose phosphate isomerase A. J Bacteriol 175:5628–5635

    PubMed  CAS  Google Scholar 

  • Iida A, Teshiba S, Mizobuchi K (1993) Identification and characterization of thetktB gene encoding a second transketolase inEscherichia coli K-12. J Bacteriol 175:5375–5383

    PubMed  CAS  Google Scholar 

  • Josephson BL, Fraenkel DG (1969) Transketolase mutants ofEscherichia coli. J Bacteriol 100:1289–1295

    PubMed  CAS  Google Scholar 

  • Josephson BL, Fraenkel DG (1974) Sugar metabolism in transketolase mutants ofEscherichia coli. J Bacteriol 118:1082–1089

    PubMed  CAS  Google Scholar 

  • Keilty S, Rosenberg M (1987) Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem 262:6389–6395

    PubMed  CAS  Google Scholar 

  • Kusian B, Yoo J-G, Bednarski R, Bowien B (1992) The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within thecfx operons of the chemoautotrophAlcaligenes eutrophus. J Bacteriol 174:7337–7344

    PubMed  CAS  Google Scholar 

  • Levering PR, Dijkhuizen L (1986) Regulation and function of transaldolase isoenzymes involved in sugar and one-carbon metabolism in the ribulose monophosphate cycle methylotrophArthrobacter P1. Arch Microbiol 144:116–123

    Article  CAS  Google Scholar 

  • Lim R, Cohen SS (1966)d-phosphoarabinoisomerase andd-ribulokinase inEscherichia coli. J Biol Chem 241:4304–4315

    PubMed  CAS  Google Scholar 

  • Lin ECC (1987) Dissimilatory pathways for sugars, polyols, and carboxylates. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds)Escherichia coli andSalmonella typhimurium: cellular and molecular biology, vol 1. American Society for Microbiology, Washington, D.C., pp 244–284

    Google Scholar 

  • Lyngstadaas A, Lobner-Olesen A, Boye E (1995) Characterization of three genes in thedam-containing operon ofEscherichia coli. Mol Gen Genet 247:546–554

    Article  PubMed  CAS  Google Scholar 

  • Nasoff MS, Wolf RE Jr (1980) Molecular cloning, correlation of genetic and restriction maps, and determination of the direction of transcription ofgnd ofEscherichia coli. J Bacteriol 143: 731–741

    PubMed  CAS  Google Scholar 

  • Nasoff MS, Baker HV II, Wolf RE Jr (1984) DNA sequence of theEscherichia coli gene,gnd, for 6-phosphogluconate dehydrogenase. Gene 27:253–264

    Article  PubMed  CAS  Google Scholar 

  • Nelson K, Selander RK (1994) Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. Proc Natl Acad Sci USA 91:10227–10231

    Article  PubMed  CAS  Google Scholar 

  • Pease AJ, Wolf RE Jr (1994) Determination of the growth rate-regulated steps in expression of theEscherichia coli K-12gnd gene. J Bacteriol 176:115–122

    PubMed  CAS  Google Scholar 

  • Sasajima K-I, Yoneda M (1974)d-sedoheptulose-7-phosphate:d-glyceraldehyde-3-phosphate glycolaldehydetransferase andd-ribulose-5-phosphate 3-epimerase mutants of aBacillus species. Agric Biol Chem 38:1305–1310

    CAS  Google Scholar 

  • Schaaff I, Hohmann S, Zimmermann FK (1990) Molecular analysis of the structural gene for yeast transaldolase. Eur J Biochem 188:597–603

    Article  PubMed  CAS  Google Scholar 

  • Schäferjohann J, Yoo J-G, Kusian B, Bowien B (1993) Thecbb operons of the facultative chemoautotrophAlcaligenes eutrophus encode phosphoglycolate phosphatase. J Bacteriol 175: 7329–7340

    PubMed  Google Scholar 

  • Skinner AJ, Cooper RA (1971) The regulation of ribose-5-phosphate isomerization inEscherichia coli K12. FEBS Letters 12:293–296

    Article  PubMed  CAS  Google Scholar 

  • Skinner AJ, Cooper RA (1974) Genetic studies on ribose 5-phosphate isomerase mutants ofEscherichia coli K-12. J Bacteriol 118:1183–1185

    PubMed  CAS  Google Scholar 

  • Sprenger GA (1991) Cloning and preliminary characterization of the transketolase gene fromEscherichia coli K-12. In: Bisswanger H, Ullrich J (eds) Biochemistry and physiology of thiamin diphosphate enzymes. VCH Verlagsgesellschaft, Weinheim, pp 322–326

    Google Scholar 

  • Sprenger GA (1992) Location of the transketolase (tkt) gene on theEscherichia coli physical map. J Bacteriol 174:1707–1708

    PubMed  CAS  Google Scholar 

  • Sprenger GA (1993) Nucleotide sequence of theEscherichia coli K-12 transketolase (tkt) gene. Biochim Biophys Acta 1216: 307–310

    PubMed  CAS  Google Scholar 

  • Sprenger GA, Schörken U, Sprenger G, Sahm H (1995a) Transketolase A ofEscherichia coli K-12. Purification and properties of the enzyme from recombinant strains. Eur J Biochem 230:525–532

    Article  PubMed  CAS  Google Scholar 

  • Sprenger GA, Schörken U, Sprenger G, Sahm H (1995b) Transaldolase B ofEscherichia coli K-12: cloning of its gene,talB, and characterization of the enzyme from recombinant strains. J Bacteriol 177 (in press)

  • Wolf RE Jr, Prather DM, Shea FM (1979) Growth rate-dependent alteration of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase levels inEscherichia coli K-12. J Bacteriol 139:1093–1096

    PubMed  CAS  Google Scholar 

  • Wood T (1985) The pentose-phosphate pathway. Academic Press, Orlando

    Google Scholar 

  • Yura T, Mori H, Nagai H, Nagata H, Ishihama H, Fujita N, Isono K, Mizobuchi K, Nakata A (1992) Systematic sequencing of theEscherichia coli genome: analysis of the 0–2.4 min region. Nucleic Acids Res 20:3305–3308

    PubMed  CAS  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenicZymomonas mobilis. Science 267:240–243

    Article  CAS  Google Scholar 

  • Zhao G, Winkler ME (1994) AnEscherichia coli K-12tktA tktB mutant deficient in transketolase activity requires pyridoxine (vitamin B6) as well as the aromatic amino acids and vitamins for growth. J Bacteriol 176:6134–38

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprenger, G.A. Genetics of pentose-phosphate pathway enzymes ofEscherichia coli K-12. Arch. Microbiol. 164, 324–330 (1995). https://doi.org/10.1007/BF02529978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529978

Key words

Navigation