Skip to main content
Log in

From growth to autolysis: the murein hydrolases inEscherichia coli

  • Mini-review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Murein hydrolases cleave bonds in the bacterial exoskeleton, the murein (peptidoglycan) sacculus, a covalently closed bag-shaped polymer made of glycan strands that are crosslinked by peptides. During growth and division of a bacterial cell, these enzymes are involved in the controlled metabolism of the murein sacculus. Murein hydrolases are believed to function as pacemaker enzymes for the enlargement of the murein sacculus since opening of bonds in the murein net is needed to allow the insertion of new subunits into the sacculus. Furthermore, they are responsible for splitting the septum during cell division. The murein turnover products that are released during growth are further degraded by these hydrolases to products that can be recycled by the biosynthetic enzymes. As potentially suicidal (autolytic) enzymes, murein hydrolases must be strictly controlled by the cell, Inhibition of murein synthesis, for example by penicillin, triggers an unbalanced action of murein hydrolases causing bacteriolysis. InEscherichia coli, 14 different murein hydrolases have so far been identified, includingN-acetylmuramyl-l-alanine amidases,dd-endopeptidases,dd-carboxypeptidases,ld-carboxypeptidases, andN-acetylglucosaminidases. In addition lysozyme-like enzymes, called “lytic transglycosylases,” produce (1→6)-anhydromuramic acid derivatives by an intramolecular transglycosylation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beachey EH, Keck W, De Pedro M, Schwarz U (1981) Exoenzymatic activity of transglycosylase isolated fromEscherichia coli. Eur J Biochem 116: 355–358

    Article  PubMed  CAS  Google Scholar 

  • Beck BD, Park JT (1977) Basis for the observed fluctuation of carboxypeptidase II activity during the cell cycle in BUG 6, a temperature-sensitive division mutant ofEscherichia coli. J Bacteriol 130: 1292–1302

    PubMed  CAS  Google Scholar 

  • Betzner AS, Keck W (1989) Molecular cloning, overexpression and mapping of theslt gene encoding the soluble lytic transglycosylase ofEscherichia coli. Mol Gen Genet 219: 489–491

    Article  PubMed  CAS  Google Scholar 

  • Betzner AS, Ferreira L, Höltje JV, Keck W (1990) Control of the activity of the soluble lytic transglycosylase by the stringent response inEscherichia coli. FEMS Microbiol Lett 67: 161–164

    Article  CAS  Google Scholar 

  • Broome-Smith JK (1985) Construction of a mutant ofEscherichia coli that has deletions of both in the penicillin-binding proteins 5 and 6 genes. J Gen Microbiol 131: 2115–2118

    PubMed  CAS  Google Scholar 

  • Broome-Smith JK, Edelman A, Yousif S, Spratt BG (1985) The nucleotide sequences of theponA andponB genes encoding penicillin-binding proteins 1A and 1B ofEscherichia coli K12. Eur J Biochem 147: 437–446

    Article  PubMed  CAS  Google Scholar 

  • Broome-Smith JK, Ioannidis I, Edelman A, Spratt BG (1988) Nucleotide sequences of the penicillin-binding protein 5 and 6 genes ofEscherichia coli. Nucleic Acids Res 16: 617

    Article  Google Scholar 

  • Burdett IDJ (1980) Analysis of sites of autolysis inBacillus subtilis by electron microscopy. J Gen Microbiol 120: 35–49

    Google Scholar 

  • Cashel (1975) Regulation of bacterial ppGpp and pppGpp. Annu Rev Microbiol 29: 301–318

    Article  PubMed  CAS  Google Scholar 

  • Cozens RM, Markiewicz, Z, Tuomanen E (1989) Role of autolysins in the activities of imipenem and CGP 31608, a novel penem, against slowly growing bacteria. Antimicrob Agents Chemother 33: 1819–1821

    PubMed  CAS  Google Scholar 

  • Ehlert K, Höltje JV, Templin MF (1995) Cloning and expression of a murein hydrolase lipoprotein fromEscherichia coli. Mol Microbiol 16: 761–768

    Article  PubMed  CAS  Google Scholar 

  • Engel H, Kazemier B, Keck W (1991) Murein-metabolizing enzymes fromEscherichia coli: sequence analysis and controlled overexpression of theslt gene, which encodes the soluble lytic transglycosylase. J Bacteriol 173: 6773–6782

    PubMed  CAS  Google Scholar 

  • Engel H, Smink AJ, Van Wijngaarden L, Keck W (1992) Mureinmetabolizing enzymes fromEscherichia coli: on the existence of a second lytic transglycosylase. J Bacteriol 175: 120–210

    Google Scholar 

  • Fein JE, Rogers HJ (1976) Autolytic enzyme-deficient mutants ofBacillus subtilis 168. J Bacteriol 127: 1427–1442

    PubMed  CAS  Google Scholar 

  • Gallant JA (1979) Stringent control inE. coli. Annu Rev Genet 13: 393–415

    Article  PubMed  CAS  Google Scholar 

  • Ghuysen JM (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32: 425–464

    PubMed  CAS  Google Scholar 

  • Ghuysen JM (1991) Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45: 37–67

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht P, Wecke J, Reinicke B (1976) On the morphogenesis of the cell wall of Staphylococci. Int Rev Cytol 44: 225–318

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht P, Kersten T, Wecke J (1992) Fan-shaped ejections of regularly arranged murosomes involved in penicillin-induced death of staphylococci. J Bacteriol 174: 2241–2252

    PubMed  CAS  Google Scholar 

  • Giesbrecht P, Kersten T, Madela K, Grob H, Blümel P, Wecke J (1993) Penicillin-induced bacteriolysis of staphylococci as a post-mortem consequence of murosome-mediated killing via wall perforation and attempts to imitate this perforation process without applying antibiotics. In: De Pedro MA, Höltje JV, Löffelhardt W (eds) Bacterial growth and lysis. Metabolism and structure of the bacterial sacculus. Plenum Press, New York London, pp 393–407

    Google Scholar 

  • Giesbrecht P, Kersten T, Maidhof H, Krüger D, Blümel P, Grob H, Wecke J (1994) A novel, “hidden” penicillin-induced death of staphylococci at high drug concentration, occurring earlier than murosome-mediated killing processes. Arch Microbiol 161: 370–383

    PubMed  CAS  Google Scholar 

  • Glauner B, Höltje JV, Schwarz U (1988) The composition of the murein ofEscherichia coli. J Biol Chem 263: 10088–10095

    PubMed  CAS  Google Scholar 

  • Goodell EW (1985) Recycling of murein byEscherichia coli. J Bacteriol 163: 305–310

    PubMed  CAS  Google Scholar 

  • Goodell EW, Higgins CF (1987) Uptake of cell wall peptides bySalmonella typhimurium andEscherichia coli. J Bacteriol 169: 3861–3865

    PubMed  CAS  Google Scholar 

  • Goodell EW, Schwarz U (1985) Release of cell wall peptides into culture medium by exponentially growingEscherichia coli. J Bacteriol 162: 391–397

    PubMed  CAS  Google Scholar 

  • Goodell EW, Lopez R, Tomasz A (1976) Suppression of lytic effect of beta-lactams onEscherichia coli and other bacteria. Proc Natl Acad Sci USA 73: 3293–3297

    Article  PubMed  CAS  Google Scholar 

  • Hartmann R, Bock-Hennig SB, Schwarz U (1974) Murein hydrolases in the envelope ofEscherichia coli. Properties in situ and solubilization from the envelope. Eur J Biochem 41: 203–208

    Article  PubMed  CAS  Google Scholar 

  • Henderson TA, Dombrosky PM, Young KD (1994) Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease ofEscherichia coli. J Bacteriol 176: 256–259

    PubMed  CAS  Google Scholar 

  • Henderson TA, Templin M, Young KD (1995) Identification and cloning of the gene encoding penicillin-binding protein 7 ofEscherichia coli. J Bacteriol 177: 2074–2079

    PubMed  CAS  Google Scholar 

  • Hermandes VJ, Bremer H (1991)Escherichia coli ppGpp synthetase II activity requiresspoT. J Biol Chem 266: 5991–5999

    Google Scholar 

  • Higgins ML, Pooley HM, Shockman GD (1970) Site of initiation of cellular autolysis inStreptococcus faecalis as seen by electron microscopy. J Bacteriol 103: 504–512

    PubMed  CAS  Google Scholar 

  • Höltje JV (1993) “Three for one”. A simple growth mechanism that guarantees a precise copy of the thin, rod-shaped murein sacculus ofEscherichia coli. In: De Pedro MA, Höltje JV, Löffelhardt W (eds) Bacterial growth and lysis. Metabolism and structure of the bacterial sacculus. Plenum Press, New York London, pp 419–426

    Google Scholar 

  • Höltje JV, Schwarz U (1985) Biosynthesis and growth of the murein sacculus. In: Nanninga N (ed) Molecular cytology ofEscherichia coli. Academic Press, New York London, pp 77–119

    Google Scholar 

  • Höltje JV, Tuomanen EI (1991) The murein hydrolases ofEscherichia coli: properties, functions and impact on the course of infections in vivo. J Gen Microbiol 137: 441–454

    PubMed  Google Scholar 

  • Höltje JV, Mirelman D, Sharon N, Schwarz U (1975) Novel type of murein transglycosylase inEscherichia coli. J Bacteriol 124: 1067–1076

    PubMed  Google Scholar 

  • Höltje JV, Kopp U, Ursinus A, Wiedemann B (1994) The negative regulator of β-lactamase induction AmpD is anN-acetyl-anhydromuramyl-l-amidase. FEMS Microbiol Lett 122: 159–164

    Article  PubMed  Google Scholar 

  • Honore N, Nicolas MH, Cole ST (1986) Inducible cephalosporinase production in clinical isolates ofEnterobacter cloacae is controlled by a regulatory gene that has been deleted fromEscherichia coli. EMBO J 5: 3709–3714

    PubMed  CAS  Google Scholar 

  • Iida K, Hirota Y, Schwarz U (1983) Mutants ofEscherichia coli defective in penicillin-insensitive mureinDd-endopeptidase. Mol Gen Genet 189: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Ingram LO (1981) Mechanism of lysis ofEscherichia coli by ethanol and other chaotropic agents. J Bacteriol 146: 331–336

    PubMed  CAS  Google Scholar 

  • Ishino F, Matsuhashi M (1981) Peptidoglycan synthetic enzyme activities of highly purified penicillin-binding protein 3 inEscherichia coli: a septum-forming reaction sequence. Biochem Biophys Res Commun 101: 905–911

    Article  PubMed  CAS  Google Scholar 

  • Ishino F, Mitsui K, Tamaki S, Matsuhashi M (1980) Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations ofEscherichia coli penicillin-binding protein 1A. Biochem Biophys Res Commun 97: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Ishino F, Park W, Tomioka S, Tamaki S, Takase I, Kunugita K, Matsuzawa H, Asoh S, Ohta T, Spratt BG, Matsuhashi M (1986) Peptidoglycan synthetic activities in membranes ofEscherichia coli caused by overproduction of penicillin-binding protein 2 and RodA protein. J Biol Chem 261: 7024–7031

    PubMed  CAS  Google Scholar 

  • Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT (1994) Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J 13: 4684–4694

    PubMed  CAS  Google Scholar 

  • Kandler O, König H (1985) Cell envelopes of archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria. Academic Press, New York, pp 413–457

    Google Scholar 

  • Keck W, Schwarz U (1979)Escherichia coli murein-Dd-endopeptidase insensitive to β-lactam antibiotics. J Bacteriol 139: 770–774

    PubMed  CAS  Google Scholar 

  • Keck W, Van Leeuwen AM, Huber M, Goodell EW (1990) Cloning and characterisation ofmepA, the structural gene of the penicillin-insensitive murein hydrolase fromEscherichia coli. Mol Microbiol 4: 209–219

    Article  PubMed  CAS  Google Scholar 

  • Kitano K, Tomasz A (1979)Escherichia coli mutants tolerant to beta-lactam antibiotics. J Bacteriol 140: 955–963

    PubMed  CAS  Google Scholar 

  • Kitano K, Tuomanen E, Tomasz A (1986) Transglycosylase and endopeptidase participate in the degradation of murein during autolysis ofEscherichia coli. J Bacteriol 167: 759–765

    PubMed  CAS  Google Scholar 

  • Koch AL (1990) Growth and form of the bacterial cell wall. Am Sci 78: 327–341

    Google Scholar 

  • Koch AL, Doyle RJ (1985) Inside-to-outside growth and turnover of the wall of gram-positive rods. J Theor Biol 117: 137–157

    PubMed  CAS  Google Scholar 

  • Kohlrausch U, Höltje JV (1991) Murein and murein precursor analysis during antibiotic-induced lysis ofEscherichia coli. J Bacteriol 173: 3425–3431

    PubMed  CAS  Google Scholar 

  • Korat B, Mottl H, Keck W (1991) Penicillin-binding protein 4 ofEscherichia coli: molecular cloning of thedacB gene, controlled overexpression, and alterations in murein composition. Mol Microbiol 5: 675–684

    Article  PubMed  CAS  Google Scholar 

  • Kusser W, Ishiguro EE (1985) Involvement of therelA gene in the autolysis ofEscherichia coli induced by inhibitors of peptidoglycan biosynthesis. J Bacteriol 164: 861–865

    PubMed  CAS  Google Scholar 

  • Labischinski H, Goodell EW, Goodell A, Hochberg ML (1991) Direct proof of a “more-than single-layered” peptidoglycan architecture ofEscherichia coli W7: a neutron small-angle scattering study. J Bacteriol 173: 751–756

    PubMed  CAS  Google Scholar 

  • Leduc M, Van Heijenoort J (1980) Autolysis ofEscherichia coli. J Bacteriol 142: 52–59

    PubMed  CAS  Google Scholar 

  • Leduc M, Kasra R, Van Hejenoort J (1982) Induction and control of the autolytic system ofEscherichia coli. J Bacteriol 152: 26–34

    PubMed  CAS  Google Scholar 

  • Lindquist S, Weston-Hafer K, Schmidt H, Pul C, Korfmann G, Erikson J, Sanders C, Martin HH, Normark S (1993) AmpG, a signal transducer in chromosomal β-lactamase induction. Mol Microbiol 9: 703–715

    Article  PubMed  CAS  Google Scholar 

  • Markiewicz Z, Broome-Smith J, Schwarz U, Spratt BG (1982) SphericalE. coli due to elevated levels ofd-alanine carboxypeptidase. Nature 297: 702–704

    Article  PubMed  CAS  Google Scholar 

  • Matsuhashi M, Wachi M, Ishino F (1990) Machinery for cell growth and division: penicillin-binding proteins and other proteins. Res Microbiol 141: 89–103

    Article  PubMed  CAS  Google Scholar 

  • Metz R, Henning S, Hammes WP (1986a)L,d-carboxypeptidase activity in ether-treated cells. Arch Microbiol 144: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Metz R, Henning S, Hammes WP (1986b)L,d-carboxypeptidase activity inEscherichia coli. II. Isolation, purification and characterization of the enzyme fromE. coli K12. Arch Microbiol 144: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Mottl H, Terpstra P, Keck W (1991) Penicillin-binding protein 4 ofEscherichia coli shows a novel type of primary structure among penicillin-interacting proteins. FEMS Microbiol Lett 78: 213–220

    Article  CAS  Google Scholar 

  • Nakagawa J, Tamaki S, Tomioka S, Matsuhashi M (1984) Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. J Biol Chem 259: 13937–13946

    PubMed  CAS  Google Scholar 

  • Nanninga N (1988) Growth and form in microorganisms: morphogenesis ofEscherichia coli. Can J Microbiol 34: 381–389

    Article  PubMed  CAS  Google Scholar 

  • Normark S, Bartowsky E, Erickson J, Jacobs C, Lindberg F, Lindquist S, Weston-Hafer K, Wikström M (1994) Mechanisms of chromosomal β-lactamase induction in gram-negative bacteria. In: Ghuysen JM, Hakenbeck R (eds) Bacterial cell wall. Elsevier. Amsterdam New York, pp 485–504

    Google Scholar 

  • Parquet C, Flouret B, Leduc M, Hirota Y, Van Heijenoort J (1983)N-acetylmuramoyl-l-alanine amidase ofEscherichia coli K12. Eur J Biochem 133: 371–377

    Article  PubMed  CAS  Google Scholar 

  • Rodionov D, Pisabarro AG, De Pedro MA, Kusser W, Ishiguro EE (1995) β-Lactam-induced bacteriolysis of amino acid-deprivedEscherichia coli is dependent on phospholipid synthesis. J Bacteriol 177: 992–997

    PubMed  CAS  Google Scholar 

  • Rogers HJ, Perkins HR, Ward JB (1980) Microbial cell walls and membranes. Chapman & Hall, London

    Google Scholar 

  • Romeis T, Höltje JV (1994a) Specific interaction of penicillinbinding proteins 3 and 7/8 with the soluble lytic transglycosylase inEscherichia coli. J Biol Chem 269: 21603–21607

    PubMed  CAS  Google Scholar 

  • Romeis T, Höltje JV (1994b) Penicillin-binding protein 7/8 ofEscherichia coli is aDd-endopeptidase. Eur J Biochem 224: 597–604

    Article  PubMed  CAS  Google Scholar 

  • Romeis T, Vollmer W, Höltje JV (1993) Characterization of three different lytic transglycosylases inEscherichia coli. FEMS Microbiol Lett 111: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Schwarz U, Asmus A, Frank H (1969) Autolytic enzymes and cell division ofEscherichia coli. J Mol Biol 41: 419–429

    Article  PubMed  CAS  Google Scholar 

  • Shockman GD, Höltje JV (1994) Microbial peptidoglycan (murein) hydrolases. In: Ghuysen JM, Hakenbeck R (eds) New comprehensive biochemistry: bacterial cell wall. Elsevier, Amsterdam New York, pp 131–166

    Google Scholar 

  • Spratt BG (1977) Properties of the penicillin binding proteins ofEscherichia coli K12. Eur J Biochem 72: 341–352

    Article  PubMed  CAS  Google Scholar 

  • Spratt BG, Strominger JL (1976) Identification of the major penicillin-binding proteins ofEscherichia coli asd-alanine carboxypeptidase IA. J Bacteriol 127: 660–663

    PubMed  CAS  Google Scholar 

  • Spratt BG, Boyd A, Stoker N (1980) Defective and plaque-forming lambda transducing bacteriophage carrying penicillin-binding protein-cell shape genes: genetic and physical mapping and identification of gene products from thelip-dacA-rodA-pbpA-leuS region of theEscherichia coli chromosome. J Bacteriol 143: 569–581

    PubMed  CAS  Google Scholar 

  • Taylor A, Das BC, Van Heijenoort J (1975) Bacterial cell wall peptidoglycan fragments produced by phage lambda or Vi II endolysin and containing 1,6-anhydro-N-acetylmuramic acid. J Biochem 53: 47–54

    CAS  Google Scholar 

  • Templin MF, Edwards DH, Höltje JV (1992) A murein hydrolase is the specific target of bulgecin inEscherichia coli. J Biol Chem 267: 20039–20043

    PubMed  CAS  Google Scholar 

  • Thunnissen AMWH, Dijkstra AJ, Kalk KH, Rozeboom HJ, Engel H, Keck W, Dijkstra BW (1994) Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature 367: 750–753

    Article  PubMed  CAS  Google Scholar 

  • Tomasz A (1968) Biological consequences of the replacement of choline by ethanolamine in the cell wall ofPneumococcus: chain formation, loss of transformability, and loss of autolysis. Proc Natl Acad Sci USA 59: 86–93

    Article  PubMed  CAS  Google Scholar 

  • Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33: 113–137

    Article  PubMed  CAS  Google Scholar 

  • Tomasz A, Albino A, Zanati E (1970) Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 227: 138–140

    Article  PubMed  CAS  Google Scholar 

  • Tomioka S, Matsuhashi M (1978) Purification of penicillin-insensitiveDd-endopeptidase: a new cell wall peptidoglycan-hydrolyzing enzyme inEscherichia coli, and its inhibition by deoxyribonucleic acids. Biochem Biophys Res Commun 84: 978–984

    Article  PubMed  CAS  Google Scholar 

  • Tomioka S, Nikaido T, Miyakawa T, Matsuhashi M (1983) Mutation of theN-acetylmuramyl-l-alanine amidase gene ofEscherichia coli. J Bacteriol 156: 463–465

    PubMed  CAS  Google Scholar 

  • Tsui HCT, Zhao G, Feng G, Leung HCE, Winkler ME (1994) Themutl repair gene ofEscherichia coli K-12 forms a superoperon with a gene encoding a new cell-wall amidase. Mol Microbiol 11: 189–202

    Article  PubMed  CAS  Google Scholar 

  • Tuomanen E, Schwartz J (1987) Penicillin-binding protein 7 and its relationship to lysis of nongrowingEscherichia coli. J Bacteriol 169: 4912–4915

    PubMed  CAS  Google Scholar 

  • Ursinus A, Höltje JV (1994) Purification and properties of a membrane-bound lytic transglycosylase fromEscherichia coli. J Bacteriol 176: 338–343

    PubMed  CAS  Google Scholar 

  • Ursinus A, Steinhaus H, Höltje JV (1992) Purification of a nocardicin A-sensitiveLd-carboxypeptidase fromEscherichia coli by affinity chromatography. J Bacteriol 174: 441–446

    PubMed  CAS  Google Scholar 

  • Van der Linden MPG, De Haan L, Hoyer MA, Keck W (1992) Possible role of penicillin-binding protein 6 fromEscherichia coli in the stabilization of stationary phase peptidoglycan. J Bacteriol 174: 7572–7578

    PubMed  Google Scholar 

  • Van Heijenoort J, Parquet C, Flouret B, Van Heijenoort Y (1975) Envelope-boundN-acetylmuramyl-l-alanine amidase ofEscherichia coli. Eur J Biochem 58: 611–619

    Article  PubMed  Google Scholar 

  • Walderich B, Höltje JV (1989) Specific localization of the lysis protein of bacteriophage MS2 in membrane adhesion sites ofEscherichia coli. J Bacteriol 171: 3331–3336

    PubMed  CAS  Google Scholar 

  • Waxman DJ, Strominger JL (1983) Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu Rev Biochem 52: 825–869

    Article  PubMed  CAS  Google Scholar 

  • Weidel W, Pelzer H (1964) Bagshaped macromolecules—a new outlook on bacterial cell walls. Adv Enzymol 26: 193–232

    PubMed  CAS  Google Scholar 

  • Yem DW, Wu HC (1976) Purification and properties of β-N-acetylglucosaminidase fromEscherichia coli. J Bacteriol 125: 324–331

    PubMed  CAS  Google Scholar 

  • Young R (1992) Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56: 430–481

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höltje, JV. From growth to autolysis: the murein hydrolases inEscherichia coli . Arch. Microbiol. 164, 243–254 (1995). https://doi.org/10.1007/BF02529958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529958

Key words

Navigation