Skip to main content

Peptidoglycan Structure, Biosynthesis, and Dynamics During Bacterial Growth

  • Chapter
  • First Online:
Extracellular Sugar-Based Biopolymers Matrices

Part of the book series: Biologically-Inspired Systems ((BISY,volume 12))

Abstract

The peptidoglycan is the key structural component of the bacterial cell wall that rests outside the cytoplasmic membrane and provides bacterial cells with physical strength and shape. It constitutes a huge mesh-like macromolecule composed of linear glycans held together by short peptides: the glycans consist of alternating amino sugars, N-acetylglucosamine (GlcNAc), and N-acetylmuramic acid (MurNAc), connected by β-1,4-glycosidic linkages, and the peptides include noncanonical d-amino acids and cross-link the glycan chains via binding to MurNAc. The peptidoglycan macromolecule is ubiquitous in bacteria, regardless of whether displaying a Gram-positive, Gram-negative, or complex mycobacterial cell envelope structure, and it is also highly restricted to bacteria, thereby distinguishing bacteria from eukaryotic microorganisms and archaea. In all bacteria, the peptidoglycan is synthesized from a lipid-anchored precursor that is preformed in the cytoplasm, flipped outward through the plasma membrane by channeling proteins (flippases), and is finally polymerized by membrane-bound, outward-facing synthetic enzymes (glycosyltransferases and transpeptidases) building a net-shaped covering of the entire bacterial cell, called the peptidoglycan sacculus. The peptidoglycan sacculus allows bacteria to cope with osmotic and environmental challenges, and it secures cell integrity during all stages of bacterial growth. It has to be sufficiently strong and rigid but, at the same time, flexible and dynamic to assure integrity of the cell during enlargement, division, and differentiation processes. Thus, the synthesis and integrity of the peptidoglycan are major targets of antibacterial therapeutics. We are summarizing in this chapter present knowledge including recent discoveries of peptidoglycan structure, assembly, and dynamics during bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addinall SG, Lutkenhaus J (1996) FtsA is localized to the septum in an FtsZ-dependent manner. J Bacteriol 178:7167–7172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Dabbagh B, Henry X, El Ghachi M, Auger G, Blanot D, Parquet C, Mengin-Lecreulx D, Bouhss A (2008) Active site mapping of MraY, a member of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily, catalyzing the first membrane step of peptidoglycan biosynthesis. Biochemistry 47:8919–8928

    Article  CAS  PubMed  Google Scholar 

  • Anderson JS, Matsuhashi M, Haskin MA, Strominger JL (1965) Lipid-phosphoacetylmuramyl-pentapeptide and lipid-phosphodisaccharide-pentapeptide: presumed membrane transport intermediates in cell wall synthesis. Proc Natl Acad Sci USA 53:881–889

    Article  CAS  PubMed  Google Scholar 

  • Anderson MS, Eveland SS, Onishi HR, Pompliano DL (1996) Kinetic mechanism of the Escherichia coli UDPMurNAc-tripeptide D-alanyl- D-alanine-adding enzyme: use of a glutathione S-transferase fusion. Biochemistry 35:16264–16269

    Article  CAS  PubMed  Google Scholar 

  • Andres CJ, Bronson JJ, D’Andrea SV, Deshpande MS, Falk PJ, Grant-Young KA, Harte WE, Ho HT, Misco PF, Robertson JG, Stock D, Sun Y, Walsh AW (2000) 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioorg Med Chem Lett 10:715–717

    Article  CAS  PubMed  Google Scholar 

  • Araki Y, Nakatani T, Hayashi H, Ito E (1971) Occurrence of non-N-substituted glucosamine residues in lysozyme-resistant peptidoglycan from Bacillus cereus cell walls. Biochem Biophys Res Commun 42:691–697

    Article  CAS  PubMed  Google Scholar 

  • Archibald AR, Hancock IC, Harwood CR (1993) Cell wall structure, synthesis, and turnover. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria: Biochemistry, physiology, and molecular genetics. ASM press, Washington, DC, pp 381–410

    Google Scholar 

  • Arnoldi M, Fritz M, Bauerlein E, Radmacher M, Sackmann E, Boulbitch A (2000) Bacterial turgor pressure can be measured by atomic force microscopy. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:1034–1044

    CAS  PubMed  Google Scholar 

  • Atrih A, Foster SJ (1999) The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination. Antonie Van Leeuwenhoek 75:299–307

    Article  CAS  PubMed  Google Scholar 

  • Atrih A, Zöllner P, Allmaier G, Foster SJ (1996) Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J Bacteriol 178:6173–6183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atrih A, Bacher G, Allmaier G, Williamson MP, Foster SJ (1999) Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol 181:3956–3966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badet B, Vermoote P, Le Goffic F (1988) Glucosamine synthetase from Escherichia coli: kinetic mechanism and inhibition by N3-fumaroyl-L-2,3-diaminopropionic derivatives. Biochemistry 27:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Badet-Denisot MA, Badet B (1992) Chemical modification of glucosamine-6-phosphate synthase by diethyl pyrocarbonate: evidence of histidine requirement for enzymatic activity. Arch Biochem Biophys 292:475–478

    Article  CAS  PubMed  Google Scholar 

  • Bartholomew JW, Mittwer T (1952) The Gram stain. Bacteriol Rev 16:1–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batson S, de Chiara C, Majce V, Lloyd AJ, Gobec S, Rea D, Fulop V, Thoroughgood CW, Simmons KJ, Dowson CG, Fishwick CWG, de Carvalho LPS, Roper DI (2017) Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat Commun 8(1):1939. https://doi.org/10.1038/s41467-017-02118-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begg KJ, Dewar SJ, Donachie WD (1995) A new Escherichia coli cell division gene, ftsK. J Bacteriol 177:6211–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson TE, Marquardt JL, Marquardt AC, Etzkorn FA, Walsh CT (1993) Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 32:2024–2030

    Article  CAS  PubMed  Google Scholar 

  • Benson TE, Walsh CT, Massey V (1997) Kinetic characterization of wild-type and S229A mutant MurB: evidence for the role of Ser 229 as a general acid. Biochemistry 36:796–805

    Article  CAS  PubMed  Google Scholar 

  • Bera A, Herbert S, Jakob A, Vollmer W, Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787

    Article  CAS  PubMed  Google Scholar 

  • Bernard E, Rolain T, Courtin P, Guillot A, Langella P, Hols P, Chapot-Chartier MP (2011) Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. J Biol Chem 286:23950–23958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164

    Article  CAS  PubMed  Google Scholar 

  • Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine KM (2007) The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65:180–200

    Article  CAS  PubMed  Google Scholar 

  • Bisson-Filho AW, Hsu YP, Squyres GR, Kuru E, Wu F, Jukes C, Sun Y, Dekker C, Holden S, VanNieuwenhze MS, Brun YV, Garner EC (2017) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:739–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolla JR, Sauer JB, Wu D, Mehmood S, Allison TM, Robinson CV (2018) Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nat Chem 10:363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boneca IG, Chiosis G (2003) Vancomycin resistance: occurrence, mechanisms and strategies to combat it. Expert Opin Ther Targets 7:311–328

    Article  CAS  PubMed  Google Scholar 

  • Boneca IG, Huang ZH, Gage DA, Tomasz A (2000) Characterization of Staphylococcus aureus cell wall glycan strands, evidence for a new β-N-acetylglucosaminidase activity. J Biol Chem 275:9910–9918

    Article  CAS  PubMed  Google Scholar 

  • Boothby D, Daneo-Moore L, Higgins ML, Coyette J, Shockman GD (1973) Turnover of bacterial cell wall peptidoglycans. J Biol Chem 248:2161–2169

    CAS  PubMed  Google Scholar 

  • Borisova M, Gaupp R, Duckworth A, Schneider A, Dalugge D, Mühleck M, Deubel D, Unsleber S, Yu W, Muth G, Bischoff M, Götz F, Mayer C (2016) Peptidoglycan recycling in gram-positive bacteria is crucial for survival in stationary phase. MBio 7(5):e00923–e00916. https://doi.org/10.1128/mBio.00923-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisova M, Gisin J, Mayer C (2017) The N-acetylmuramic acid 6-phosphate phosphatase MupP completes the Pseudomonas peptidoglycan recycling pathway leading to intrinsic fosfomycin resistance. MBio 8(2). https://doi.org/10.1128/mBio.00092-17

  • Botella H, Yang G, Ouerfelli O, Ehrt S, Nathan CF, Vaubourgeix J (2017) Distinct spatiotemporal dynamics of peptidoglycan synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis. mBio, 8(5). https://doi.org/10.1128/mBio.01183-17

  • Bouhss A, Mengin-Lecreulx D, Blanot D, van Heijenoort J, Parquet C (1997) Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli. Biochemistry 36:11556–11563

    Article  CAS  PubMed  Google Scholar 

  • Bouhss A, Dementin S, van Heijenoort J, Parquet C, Blanot D (2002) MurC and MurD synthetases of peptidoglycan biosynthesis: borohydride trapping of acyl-phosphate intermediates. Methods Enzymol 354:189–196

    Article  CAS  PubMed  Google Scholar 

  • Bouhss A, Crouvoisier M, Blanot D, Mengin-Lecreulx D (2004) Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J Biol Chem 279:29974–29980

    Article  CAS  PubMed  Google Scholar 

  • Braun V (1975) Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta 415:335–377

    Article  CAS  PubMed  Google Scholar 

  • Braun V (2015) Bacterial cell wall research in Tubingen: a brief historical account. Int J Med Microbiol 305:178–182

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Rehn K (1969) Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. Eur J Biochem 10:426–438

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Gnirke H, Henning U, Rehn K (1973) Model for the structure of the shape-maintaining layer of the Escherichia coli cell envelope. J Bacteriol 114:1264–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  CAS  PubMed  Google Scholar 

  • Bronson JJ, DenBleyker KL, Falk PJ, Mate RA, Ho HT, Pucci MJ, Snyder LB (2003) Discovery of the first antibacterial small molecule inhibitors of MurB. Bioorg Med Chem Lett 13:873–875

    Article  CAS  PubMed  Google Scholar 

  • Brown ED, Marquardt JL, Lee JP, Walsh CT, Anderson KS (1994) Detection and characterization of a phospholactoyl-enzyme adduct in the reaction catalyzed by UDP-N-acetylglucosamine enolpyruvoyl transferase, MurZ. Biochemistry 33:10638–10645

    Article  CAS  PubMed  Google Scholar 

  • Buddelmeijer N, Aarsman ME, Kolk AH, Vicente M, Nanninga N (1998) Localization of cell division protein FtsQ by immunofluorescence microscopy in dividing and nondividing cells of Escherichia coli. J Bacteriol 180:6107–6116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bugg TD, Walsh CT (1992) Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep 9:199–215

    Article  CAS  PubMed  Google Scholar 

  • Bugg TD, Braddick D, Dowson CG, Roper DI (2011) Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol 29:167–173

    Article  CAS  PubMed  Google Scholar 

  • Burge RE, Adams R, Balyuzi HH, Reaveley DA (1977a) Structure of the peptidoglycan of bacterial cell walls. II J Mol Biol 117:955–974

    Article  CAS  PubMed  Google Scholar 

  • Burge RE, Fowler AG, Reaveley DA (1977b) Structure of the peptidoglycan of bacterial cell walls. I J Mol Biol 117:927–953

    Article  CAS  PubMed  Google Scholar 

  • Cabeen MT, Jacobs-Wagner C (2007) Skin and bones: the bacterial cytoskeleton, cell wall, and cell morphogenesis. J Cell Biol 179:381–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YG, Frankel MB, Dengler V, Schneewind O, Missiakas D (2013) Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium. J Bacteriol 195:4650–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YG, Kim HK, Schneewind O, Missiakas D (2014) The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J Biol Chem 289:15680–15690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman GB, Hillier J (1953) Electron microscopy of ultra-thin sections of bacteria I. Cellular division in Bacillus cereus. J Bacteriol 66:362–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheggour A, Fanuel L, Duez C, Joris B, Bouillenne F, Devreese B, Van Driessche G, Van Beeumen J, Frere JM, Goffin C (2000) The dppA gene of Bacillus subtilis encodes a new D-aminopeptidase. Mol Microbiol 38:504–513

    Article  CAS  PubMed  Google Scholar 

  • Chen S, McDowall A, Dobro MJ, Briegel A, Ladinsky M, Shi J, Tocheva EI, Beeby M, Pilhofer M, Ding HJ, Li Z, Gan L, Morris DM, Jensen GJ (2010) Electron cryotomography of bacterial cells. J Vis Exp: JoVE 39. https://doi.org/10.3791/1943

  • Chen MW, Lohkamp B, Schnell R, Lescar J, Schneider G (2013) Substrate channel flexibility in Pseudomonas aeruginosa MurB accommodates two distinct substrates. PLoS One 8(6):e66936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Park JT (2002) Substrate specificity of the AmpG permease required for recycling of cell wall anhydro-muropeptides. J Bacteriol 184:6434–6436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Li H, Merdek K, Park JT (2000) Molecular characterization of the β-N-acetylglucosaminidase of Escherichia coli and its role in cell wall recycling. J Bacteriol 182:4836–4840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho H, Wivagg CN, Kapoor M, Barry Z, Rohs PD, Suh H, Marto JA, Garner EC, Bernhardt TG (2016) Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat Microbiol:16172. https://doi.org/10.1038/nmicrobiol.2016.172

  • Chung BC, Zhao J, Gillespie RA, Kwon DY, Guan Z, Hong J, Zhou P, Lee SY (2013) Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science 341:1012–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin BD, Wang Y, Beuria TK, Margolin W (2007) Interaction between cell division proteins FtsE and FtsZ. J Bacteriol 189:3026–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  CAS  PubMed  Google Scholar 

  • Cremniter J, Mainardi JL, Josseaume N, Quincampoix JC, Dubost L, Hugonnet JE, Marie A, Gutmann L, Rice LB, Arthur M (2006) Novel mechanism of resistance to glycopeptide antibiotics in Enterococcus faecium. J Biol Chem 281:32254–32262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl U, Jaeger T, Nguyen BT, Sattler JM, Mayer C (2004) Identification of a phosphotransferase system of Escherichia coli required for growth on N-acetylmuramic acid. J Bacteriol 186:2385–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai K, Xu Y, Lutkenhaus J (1993) Cloning and characterization of ftsN, an essential cell division gene in Escherichia coli isolated as a multicopy suppressor of ftsA12(Ts). J Bacteriol 175:3790–3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajkovic A, Tesson B, Chauhan S, Courtin P, Keary R, Flores P, Marliere C, Filipe SR, Chapot-Chartier MP, Carballido-Lopez R (2017) Hydrolysis of peptidoglycan is modulated by amidation of meso-diaminopimelic acid and Mg(2+) in Bacillus subtilis. Mol Microbiol 104:972–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jonge BL, Chang YS, Gage D, Tomasz A (1992) Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem 267:11248–11254

    PubMed  Google Scholar 

  • de Pedro MA, Cava F (2015) Structural constraints and dynamics of bacterial cell wall architecture. Front Microbiol 6:449. https://doi.org/10.3389/fmicb.2015.00449

    Article  PubMed  PubMed Central  Google Scholar 

  • De Petris S (1967) Ultrastructure of the cell wall of Escherichia coli and chemical nature of its constituent layers. J Ultrastruct Res 19:45–83

    Article  PubMed  Google Scholar 

  • Desmarais SM, De Pedro MA, Cava F, Huang KC (2013) Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. Mol Microbiol 89:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmarais SM, Cava F, de Pedro MA, Huang KC (2014) Isolation and preparation of bacterial cell walls for compositional analysis by ultra performance liquid chromatography. J Vis Exp: JoVE 83:e51183. https://doi.org/10.3791/51183

    Article  CAS  Google Scholar 

  • Di Berardino M, Dijkstra A, Stuber D, Keck W, Gubler M (1996) The monofunctional glycosyltransferase of Escherichia coli is a member of a new class of peptidoglycan-synthesising enzymes. FEBS Lett 392:184–188

    Article  PubMed  Google Scholar 

  • Dmitriev BA, Ehlers S, Rietschel ET (1999) Layered murein revisited: a fundamentally new concept of bacterial cell wall structure, biogenesis and function. Med Microbiol Immunol 187:173–181

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev BA, Ehlers S, Rietschel ET, Brennan PJ (2000) Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int J Med Microbiol 290:251–258

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev BA, Toukach FV, Schaper K-J, Holst O, Rietschel ET, Ehlers S (2003) Tertiary structure of bacterial murein: the scaffold model. J Bacteriol 185:3458–3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitriev BA, Toukach FV, Holst O, Rietschel ET, Ehlers S (2004) Tertiary structure of Staphylococcus aureus cell wall murein. J Bacteriol 186:7141–7148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitriev B, Toukach F, Ehlers S (2005) Towards a comprehensive view of the bacterial cell wall. Trends Microbiol 13:569–574

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Cuevas P, Porcelli I, Daniel RA, Errington J (2013) Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol Microbiol 89:1084–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Soldner R, Carballido-Lopez R (2011) Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333:225–228

    Article  CAS  PubMed  Google Scholar 

  • Dörr T, Lam H, Alvarez L, Cava F, Davis BM, Waldor MK (2014) A novel peptidoglycan binding protein crucial for PBP1A-mediated cell wall biogenesis in Vibrio cholerae. PLoS Genet 10(6):e1004433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doublet P, van Heijenoort J, Mengin-Lecreulx D (1994) The glutamate racemase activity from Escherichia coli is regulated by peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanine. Biochemistry 33:5285–5290

    Article  CAS  PubMed  Google Scholar 

  • Doyle RJ, Chaloupka J, Vinter V (1988) Turnover of cell walls in microorganisms. Microbiol Rev 52:554–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dramsi S, Magnet S, Davison S, Arthur M (2008) Covalent attachment of proteins to peptidoglycan. FEMS Microbiol Rev 32:307–320

    Article  CAS  PubMed  Google Scholar 

  • Du W, Brown JR, Sylvester DR, Huang J, Chalker AF, So CY, Holmes DJ, Payne DJ, Wallis NG (2000) Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in gram-positive bacteria. J Bacteriol 182:4146–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubrac S, Bisicchia P, Devine KM, Msadek T (2008) A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 70:1307–1322

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt A, Hoyland CN, Vollmer D, Bisle S, Cleverley RM, Johnsborg O, Havarstein LS, Lewis RJ, Vollmer W (2012) Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microb Drug Resist 18:240–255

    Article  CAS  PubMed  Google Scholar 

  • Egan AJ, Vollmer W (2013) The physiology of bacterial cell division. Ann N Y Acad Sci 1277:8–28

    Article  CAS  PubMed  Google Scholar 

  • Egan AJ, Jean NL, Koumoutsi A, Bougault CM, Biboy J, Sassine J, Solovyova AS, Breukink E, Typas A, Vollmer W, Simorre JP (2014) Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B. Proc Natl Acad Sci USA 111:8197–8202

    Article  CAS  PubMed  Google Scholar 

  • Egan AJ, Biboy J, van’t Veer I, Breukink E, Vollmer W (2015) Activities and regulation of peptidoglycan synthases. Philos Trans R Soc Lond Ser B Biol Sci 370(1679). https://doi.org/10.1098/rstb.2015.0031

    Article  CAS  Google Scholar 

  • Egan AJ, Cleverley RM, Peters K, Lewis RJ, Vollmer W (2017) Regulation of bacterial cell wall growth. FEBS J 284:851–867

    Article  CAS  PubMed  Google Scholar 

  • El Ghachi M, Derbise A, Bouhss A, Mengin-Lecreulx D (2005) Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli. J Biol Chem 280:18689–18695

    Article  PubMed  CAS  Google Scholar 

  • Emami K, Guyet A, Kawai Y, Devi J, Wu LJ, Allenby N, Daniel RA, Errington J (2017) RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat Microbiol 2:16253. https://doi.org/10.1038/nmicrobiol.2016.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errington J (2015) Bacterial morphogenesis and the enigmatic MreB helix. Nat Rev Microbiol 13:241–248

    Article  CAS  PubMed  Google Scholar 

  • Errington J, Mickiewicz K, Kawai Y, Wu LJ (2016) L-form bacteria, chronic diseases and the origins of life. Philos Trans R Soc Lond Ser B Biol Sci 371(1707). https://doi.org/10.1098/rstb.2015.0494

    Article  Google Scholar 

  • Eschenburg S, Kabsch W, Healy ML, Schönbrunn E (2003) A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J Biol Chem 278:49215–49222

    Article  CAS  PubMed  Google Scholar 

  • Eschenburg S, Priestman M, Schönbrunn E (2005) Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem 280:3757–3763

    Article  CAS  PubMed  Google Scholar 

  • Fay A, Dworkin J (2009) Bacillus subtilis homologs of MviN (MurJ), the putative Escherichia coli lipid II flippase, are not essential for growth. J Bacteriol 191:6020–6028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink G, Szewczak-Harris A, Löwe J (2016) SnapShot: The Bacterial Cytoskeleton. Cell 166:522–522. e521. https://doi.org/10.1016/j.cell.2016.06.057

    Article  CAS  PubMed  Google Scholar 

  • Firczuk M, Bochtler M (2007a) Folds and activities of peptidoglycan amidases. FEMS Microbiol Rev 31:676–691

    Article  CAS  PubMed  Google Scholar 

  • Firczuk M, Bochtler M (2007b) Mutational analysis of peptidoglycan amidase MepA. Biochemistry 46(1):120–128

    Article  CAS  PubMed  Google Scholar 

  • Flärdh K (2010) Cell polarity and the control of apical growth in Streptomyces. Curr Opin Microbiol 13:758–765

    Article  PubMed  CAS  Google Scholar 

  • Fleming A (1955) The story of penicillin. Bull Georgetown Univ Med Cent 8:128–132

    CAS  PubMed  Google Scholar 

  • Fleming TC, Shin JY, Lee SH, Becker E, Huang KC, Bustamante C, Pogliano K (2010) Dynamic SpoIIIE assembly mediates septal membrane fission during Bacillus subtilis sporulation. Genes Dev 24:1160–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Formanek H, Rauscher R (1979) Electron diffraction studies of the peptidoglycan of bacterial cell walls. Ultramicroscopy 3:337–342

    Article  CAS  PubMed  Google Scholar 

  • Foster SJ, Popham DL (2002) Structure and synthesis of cell wall, spore cortex, teichoic acids, S-layers, and capsules. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: From genes to cells. ASM Press, Washington, DC, pp 21–41

    Chapter  Google Scholar 

  • Fujihashi M, Zhang YW, Higuchi Y, Li XY, Koyama T, Miki K (2001) Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc Natl Acad Sci USA 9:4337–4342

    Article  Google Scholar 

  • Fukushima T, Afkham A, Kurosawa S, Tanabe T, Yamamoto H, Sekiguchi J (2006) A new D,L-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis. J Bacteriol 188:5541–5550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima T, Furihata I, Emmins R, Daniel RA, Hoch JA, Szurmant H (2011) A role for the essential YycG sensor histidine kinase in sensing cell division. Mol Microbiol 79:503–522

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Chen S, Jensen GJ (2008) Molecular organization of Gram-negative peptidoglycan. Proc Natl Acad Sci USA 105:18953–18957

    Article  CAS  PubMed  Google Scholar 

  • Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geddes A (2008) 80th Anniversary of the discovery of penicillin: An appreciation of Sir Alexander Fleming. Int J Antimicrob Agents 32(5):373. https://doi.org/10.1016/j.ijantimicag.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  • Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED (1996) Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35:579–585

    Article  CAS  PubMed  Google Scholar 

  • Gerding MA, Liu B, Bendezu FO, Hale CA, Bernhardt TG, de Boer PA (2009) Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J Bacteriol 191:7383–7401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstmans H, Rodriguez-Rubio L, Lavigne R, Briers Y (2016) From endolysins to Artilysin(R)s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem Soc Trans 44:123–128

    Article  CAS  PubMed  Google Scholar 

  • Ghuysen JM (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32:425–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gisin J, Schneider A, Nägele B, Borisova M, Mayer C (2013) A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat Chem Biol 9:491–493

    Article  CAS  PubMed  Google Scholar 

  • Glauner B (1988) Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem 172:451–464

    Article  CAS  PubMed  Google Scholar 

  • Glauner B, Höltje JV, Schwarz U (1988) The composition of the murein of Escherichia coli. J Biol Chem 263:10088–10095

    CAS  PubMed  Google Scholar 

  • Goehring NW, Beckwith J (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 15:R514–R526

    Article  CAS  PubMed  Google Scholar 

  • Goffin C, Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodell EW (1985) Recycling of murein by Escherichia coli. J Bacteriol 163:305–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodell EW, Schwarz U (1985) Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J Bacteriol 162:391–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gram H (1884) The differential staining of Schizomycetes in tissue sections and in dried preparations. Fortschr Med 2:185–189

    Google Scholar 

  • Hakulinen JK, Hering J, Branden G, Chen H, Snijder A, Ek M, Johansson P (2017) MraY-antibiotic complex reveals details of tunicamycin mode of action. Nat Chem Biol 13:265–267

    Article  CAS  PubMed  Google Scholar 

  • Hale CA, de Boer PA (1997) Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88:175–185

    Article  CAS  PubMed  Google Scholar 

  • Hale CA, Rhee AC, de Boer PA (2000) ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J Bacteriol 182:5153–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris JR (2015) Transmission electron microscopy in molecular structural biology: a historical survey. Arch Biochem Biophys 581:3–18

    Article  CAS  PubMed  Google Scholar 

  • Harrison J, Lloyd G, Joe M, Lowary TL, Reynolds E, Walters-Morgan H, Bhatt A, Lovering A, Besra GS, Alderwick LJ (2016) Lcp1 Is a phosphotransferase responsible for ligating arabinogalactan to peptidoglycan in Mycobacterium tuberculosis. mBio 7(4). https://doi.org/10.1128/mBio.00972-16

  • Hartmann E, Konig H (1994) A novel pathway of peptide biosynthesis found in methanogenic Archaea. Arch Microbiol 162:430–432

    Article  CAS  PubMed  Google Scholar 

  • Harz H, Burgdorf K, Höltje JV (1990) Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem 190:120–128

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Ooiwa S, Sekiguchi J (2011) Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of D,L-endopeptidase activity at the lateral cell wall. J Bacteriol 194:796–803

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Matsushima H, Suparthana IP, Ogasawara H, Yamamoto H, Teng C, Sekiguchi J (2018) Digestion of peptidoglycan near the cross-link is necessary for the growth of Bacillus subtilis. Microbiology 164:299–307

    Article  CAS  PubMed  Google Scholar 

  • Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ (2008) Cell wall peptidoglycan architecture in Bacillus subtilis. Proc Natl Acad Sci USA 105:14603–14608

    Article  CAS  PubMed  Google Scholar 

  • Healy VL, Lessard IA, Roper DI, Knox JR, Walsh CT (2000) Vancomycin resistance in enterococci: reprogramming of the D-ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. Chem Biol 7:R109–R119

    Article  CAS  PubMed  Google Scholar 

  • Heidrich C, Templin MF, Ursinus A, Merdanovic M, Berger J, Schwarz H, de Pedro MA, Höltje JV (2001) Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol 41:167–178

    Article  CAS  PubMed  Google Scholar 

  • Henrichfreise B, Brunke M, Viollier PH (2016) Bacterial surfaces: the wall that SEDS built. Curr Biol 26:R1158–R1160

    Article  CAS  PubMed  Google Scholar 

  • Hobot JA, Carlemalm E, Villiger W, Kellenberger E (1984) Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J Bacteriol 160:143–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Philadelphia

    Google Scholar 

  • Höltje J-V (1995) From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol 164:243–254

    Article  PubMed  Google Scholar 

  • Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    PubMed  PubMed Central  Google Scholar 

  • Horsburgh GJ, Atrih A, Williamson MP, Foster SJ (2003) LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase. Biochemistry 42:257–264

    Article  CAS  PubMed  Google Scholar 

  • Hrast M, Jukic M, Patin D, Tod J, Dowson CG, Roper DI, Barreteau H, Gobec S (2018) In silico identification, synthesis and biological evaluation of novel tetrazole inhibitors of MurB. Chem Biol Drug Des 91:1101–1112

    Article  CAS  PubMed  Google Scholar 

  • Hsu YP, Rittichier J, Kuru E, Yablonowski J, Pasciak E, Tekkam S, Hall E, Murphy B, Lee TK, Garner EC, Huang KC, Brun YV, VanNieuwenhze MS (2017) Full color palette of fluorescent D-amino acids for in situ labeling of bacterial cell walls. Chem Sci 8:6313–6321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M, Walker S (2003) Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc Natl Acad Sci USA 100:845–849

    Article  CAS  PubMed  Google Scholar 

  • Hugonnet JE, Mengin-Lecreulx D, Monton A, den Blaauwen T, Carbonnelle E, Veckerle C, Brun YV, van Nieuwenhze M, Bouchier C, Tu K, Rice LB, Arthur M (2016) Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli. Elife:5. https://doi.org/10.7554/eLife.19469

  • Inoue A, Murata Y, Takahashi H, Tsuji N, Fujisaki S, Kato JI (2008) Involvement of an essential gene, mviN, in murein synthesis in Escherichia coli. J Bacteriol 190:7298–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs C, Joris B, Jamin M, Klarsov K, Van Beeumen J, Mengin-Lecreulx D, van Heijenoort J, Park JT, Normark S, Frere JM (1995) AmpD, essential for both β-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 15:553–559

    Article  CAS  PubMed  Google Scholar 

  • Jaeger T, Arsic M, Mayer C (2005) Scission of the lactyl ether bond of N-acetylmuramic acid by Escherichia coli “etherase”. J Biol Chem 280:30100–30106

    Article  CAS  PubMed  Google Scholar 

  • Jankute M, Cox JA, Harrison J, Besra GS (2015) Assembly of the mycobacterial cell wall. Annu Rev Microbiol 69:405–423

    Article  CAS  PubMed  Google Scholar 

  • Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C, Jogler M, Bollschweiler D, Rohde M, Mayer C, Engelhardt H, Spring S, Jogler C (2015) Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 6:7116. https://doi.org/10.1038/ncomms8116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JW, Fisher JF, Mobashery S (2013) Bacterial cell-wall recycling. Ann N Y Acad Sci 1277:54–75

    Article  CAS  PubMed  Google Scholar 

  • Jolly L, Ferrari P, Blanot D, Van Heijenoort J, Fassy F, Mengin-Lecreulx D (1999) Reaction mechanism of phosphoglucosamine mutase from Escherichia coli. Eur J Biochem 262:202–210

    Article  CAS  PubMed  Google Scholar 

  • Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    Article  CAS  PubMed  Google Scholar 

  • Kalamorz F, Reichenbach B, Marz W, Rak B, Görke B (2007) Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Mol Microbiol 65:1518–1533

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, König H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol 118:141–152

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, König H (1993) Cell envelopes of archaea: Structure and chemistry. In: Mea K (ed) The biochemistry of Archaea (Archaebacteria). Elsevier Science Publishers B. H, Amsterdam, pp 223–259

    Chapter  Google Scholar 

  • Kandler O, König H (1998) Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci 54:305–308

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Marles-Wright J, Cleverley RM, Emmins R, Ishikawa S, Kuwano M, Heinz N, Bui NK, Hoyland CN, Ogasawara N, Lewis RJ, Vollmer W, Daniel RA, Errington J (2011) A widespread family of bacterial cell wall assembly proteins. EMBO J 30:4931–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai Y, Mickiewicz K, Errington J (2018) Lysozyme counteracts β-lactam antibiotics by promoting the emergence of L-form bacteria. Cell 172:1038–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelemen MV, Rogers HJ (1971) Three-dimensional molecular models of bacterial cell wall mucopeptides (peptidoglycans). Proc Natl Acad Sci USA 68:992–996

    Article  CAS  PubMed  Google Scholar 

  • Kellenberger E, Ryter A (1958) Cell wall and cytoplasmic membrane of Escherichia coli. J Biophys Biochem Cytol 4:323–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Chang J, Singh M (2015) Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys Acta 1848(1 Pt B):350–362

    Article  CAS  PubMed  Google Scholar 

  • King DT, Lameignere E, Strynadka NC (2014) Structural insights into the lipoprotein outer membrane regulator of penicillin-binding protein 1B. J Biol Chem 289:19245–19253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishida H, Unzai S, Roper DI, Lloyd A, Park SY, Tame JR (2006) Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. Biochemistry 45:783–792

    Article  CAS  PubMed  Google Scholar 

  • Kluj RM, Ebner P, Adamek M, Ziemert N, Mayer C, Borisova M (2018) Recovery of the peptidoglycan turnover product released by the Autolysin Atl in Staphylococcus aureus involves the phosphotransferase system transporter MurP and the Novel 6-phospho-N-acetylmuramidase MupG. Front Microbiol 9(2725). https://doi.org/10.3389/fmicb.2018.02725

  • Koch AL (1985) How bacteria grow and divide in spite of internal hydrostatic pressure. Can J Microbiol 31:1071–1084

    Article  CAS  PubMed  Google Scholar 

  • Koch AL (1995) Bacterial growth and form: Evolution and biophysics. Chapman and Hall, New York

    Book  Google Scholar 

  • Koch AL, Doyle RJ (1985) Inside-to-outside growth and turnover of the wall of Gram-positive rods. J Theor Biol 117:137–157

    Article  CAS  PubMed  Google Scholar 

  • Koch AL, Woeste S (1992) Elasticity of the sacculus of Escherichia coli. J Bacteriol 174:4811–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König H, Kandler O, Jensen M, Rietschel ET (1983) The primary structure of the glycan moiety of pseudomurein from Methanobacterium thermoautotrophicum. Hoppe Seylers Z Physiol Chem 364:627–636

    Article  PubMed  Google Scholar 

  • Kouidmi I, Levesque RC, Paradis-Bleau C (2014) The biology of Mur ligases as an antibacterial target. Mol Microbiol 94:242–253

    Article  CAS  PubMed  Google Scholar 

  • Kühner D, Stahl M, Demircioglu DD, Bertsche U (2014) From cells to muropeptide structures in 24 h: peptidoglycan mapping by UPLC-MS. Sci Rep 4:7494. https://doi.org/10.1038/srep07494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuru E, Tekkam S, Hall E, Brun YV, Van Nieuwenhze MS (2015) Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat Protoc 10:33–52

    Article  CAS  PubMed  Google Scholar 

  • Labischinski H, Barnickel G, Bradaczek H, Giesbrecht P (1979) On the secondary and tertiary structure of murein. Low and medium-angle X-ray evidence against chitin-based conformations of bacterial peptidoglycan. Eur J Biochem 95:147–155

    Article  CAS  PubMed  Google Scholar 

  • Labischinski H, Goodell EW, Goodell A, Hochberg ML (1991) Direct proof of a “more-than-single-layered” peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J Bacteriol 173:751–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laddomada F, Miyachiro MM, Dessen A (2016) Structural insights into protein-protein interactions involved in bacterial cell wall biogenesis. Antibiotics (Basel) 5(2):E14. https://doi.org/10.3390/antibiotics5020014

    Article  CAS  Google Scholar 

  • Lai GC, Cho H, Bernhardt TG (2017) The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli. PLoS Genet 13(7):e1006934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavollay M, Arthur M, Fourgeaud M, Dubost L, Marie A, Veziris N, Blanot D, Gutmann L, Mainardi JL (2008) The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J Bacteriol 190:4360–4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclercq S, Derouaux A, Olatunji S, Fraipont C, Egan AJ, Vollmer W, Breukink E, Terrak M (2017) Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci Rep 7:43306. https://doi.org/10.1038/srep43306

    Article  PubMed  PubMed Central  Google Scholar 

  • Leduc M, Frehel C, Siegel E, Van Heijenoort J (1989) Multilayered distribution of peptidoglycan in the periplasmic space of Escherichia coli. J Gen Microbiol 135:1243–1254

    CAS  PubMed  Google Scholar 

  • Lee TK, Meng K, Shi H, Huang KC (2016) Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells. Nat Commun 7:13170. https://doi.org/10.1038/ncomms13170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levefaudes M, Patin D, de Sousa-d’Auria C, Chami M, Blanot D, Herve M, Arthur M, Houssin C, Mengin-Lecreulx D (2015) Diaminopimelic acid amidation in Corynebacteriales: new insights into the role of LtsA in peptidoglycan modification. J Biol Chem 290:13079–13094

    Article  CAS  PubMed  Google Scholar 

  • Liechti GW, Kuru E, Hall E, Kalinda A, Brun YV, VanNieuwenhze M, Maurelli AT (2014) A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:507–510

    Article  CAS  PubMed  Google Scholar 

  • Liechti G, Kuru E, Packiam M, Hsu YP, Tekkam S, Hall E, Rittichier JT, VanNieuwenhze M, Brun YV, Maurelli AT (2016) Pathogenic Chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, egulated by MreB, for cell division. PLoS Pathog 12(5):e1005590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liger D, Masson A, Blanot D, van Heijenoort J, Parquet C (1995) Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coli. Eur J Biochem 230:80–87

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Strynadka NC (2002) Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 9:870–876

    CAS  PubMed  Google Scholar 

  • Lin L, Osorio Valeriano M, Harms A, Sogaard-Andersen L, Thanbichler M (2017) Bactofilin-mediated organization of the ParABS chromosome segregation system in Myxococcus xanthus. Nat Commun 8(1):1817. https://doi.org/10.1038/s41467-017-02015-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  CAS  PubMed  Google Scholar 

  • Litzinger S, Mayer C (2010) Chapter 1: The murein sacculus. In: König H, Claus H, Varma A (eds) Prokaryotic cell wall compounds – Structure and biochemistry. Springer, Heidelberg/Berlin/New York, pp 3–52

    Chapter  Google Scholar 

  • Litzinger S, Duckworth A, Nitzsche K, Risinger C, Wittmann V, Mayer C (2010) Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by β-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase. J Bacteriol 192:3132–3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Persons L, Lee L, de Boer PA (2015) Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol Microbiol 95:945–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TY, Chu SH, Shaw GC (2018) Deletion of the cell wall peptidoglycan hydrolase gene cwlO or lytE severely impairs transformation efficiency in Bacillus subtilis. J Gen Appl Microbiol 64:139–144

    Article  CAS  PubMed  Google Scholar 

  • Loskill P, Pereira PM, Jung P, Bischoff M, Herrmann M, Pinho MG, Jacobs K (2014) Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. Biophys J 107:1082–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovering AL, de Castro LH, Lim D, Strynadka NC (2007) Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315:1402–1405

    Article  CAS  PubMed  Google Scholar 

  • Lovering AL, Safadi SS, Strynadka NC (2012) Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 81:451–478

    Article  CAS  PubMed  Google Scholar 

  • Löwe J, van den Ent F, Amos LA (2004) Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct 33:177–198

    Article  PubMed  CAS  Google Scholar 

  • Lupoli TJ, Tsukamoto H, Doud EH, Wang TS, Walker S, Kahne D (2011) Transpeptidase-mediated incorporation of D-amino acids into bacterial peptidoglycan. J Am Chem Soc 133:10748–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnet S, Arbeloa A, Mainardi JL, Hugonnet JE, Fourgeaud M, Dubost L, Marie A, Delfosse V, Mayer C, Rice LB, Arthur M (2007a) Specificity of L,D-transpeptidases from gram-positive bacteria producing different peptidoglycan chemotypes. J Biol Chem 282:13151–13159

    Article  CAS  PubMed  Google Scholar 

  • Magnet S, Bellais S, Dubost L, Fourgeaud M, Mainardi JL, Petit-Frere S, Marie A, Mengin-Lecreulx D, Arthur M, Gutmann L (2007b) Identification of the L,D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J Bacteriol 189:3927–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnet S, Dubost L, Marie A, Arthur M, Gutmann L (2008) Identification of the L,D-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J Bacteriol 190:4782–4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainardi JL, Villet R, Bugg TD, Mayer C, Arthur M (2008) Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 32:386–408

    Article  CAS  PubMed  Google Scholar 

  • Manat G, Roure S, Auger R, Bouhss A, Barreteau H, Mengin-Lecreulx D, Touze T (2014) Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb Drug Resist 20:199–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcyjaniak M, Odintsov SG, Sabala I, Bochtler M (2004) Peptidoglycan amidase MepA is a LAS metallopeptidase. J Biol Chem 279:43982–43989

    Article  CAS  PubMed  Google Scholar 

  • Marienfeld S, Uhlemann EM, Schmid R, Kramer R, Burkovski A (1997) Ultrastructure of the Corynebacterium glutamicum cell wall. Antonie Van Leeuwenhoek 72:291–297

    Article  CAS  PubMed  Google Scholar 

  • Matias VR, Beveridge TJ (2005) Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 56:240–251

    Article  CAS  PubMed  Google Scholar 

  • Matias VR, Beveridge TJ (2006) Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J Bacteriol 188:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ (2003) Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 185:6112–6118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer C (2012) Bacterial cell wall recycling. eLS: https://doi.org/10.1002/9780470015902.a0021974

  • Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763

    Article  CAS  PubMed  Google Scholar 

  • McDonough MA, Anderson JW, Silvaggi NR, Pratt RF, Knox JR, Kelly JA (2002) Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. J Mol Biol 322:111–122

    Article  CAS  PubMed  Google Scholar 

  • McPherson DC, Popham DL (2003) Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis. J Bacteriol 185:1423–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeske AJ, Sham LT, Kimsey H, Koo BM, Gross CA, Bernhardt TG, Rudner DZ (2015) MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc Natl Acad Sci USA 112:6437–6442

    Article  CAS  PubMed  Google Scholar 

  • Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ, Kahne D, Walker S, Kruse AC, Bernhardt TG, Rudner DZ (2016) SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537:634–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meisner J, Montero Llopis P, Sham LT, Garner E, Bernhardt TG, Rudner DZ (2013) FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Mol Microbiol 89:1069–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengin-Lecreulx D, van Heijenoort J (1994) Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol 176:5788–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengin-Lecreulx D, van Heijenoort J (1996) Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli. J Biol Chem 271:32–39

    Article  CAS  PubMed  Google Scholar 

  • Mengin-Lecreulx D, van Heijenoort J, Park JT (1996) Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-γ-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol 178(18):5347–5352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengin-Lecreulx D, Falla T, Blanot D, van Heijenoort J, Adams DJ, Chopra I (1999) Expression of the Staphylococcus aureus UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:L-lysine ligase in Escherichia coli and effects on peptidoglycan biosynthesis and cell growth. J Bacteriol 181:5909–5914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meroueh SO, Bencze KZ, Hesek D, Lee M, Fisher JF, Stemmler TL, Mobashery S (2006) Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc Natl Acad Sci USA 103:4404–4409

    Article  CAS  PubMed  Google Scholar 

  • Meziane-Cherif D, Saul FA, Haouz A, Courvalin P (2012) Structural and functional characterization of VanG D-Ala:D-Ser ligase associated with vancomycin resistance in Enterococcus faecalis. J Biol Chem 287:37583–37592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michie KA, Lowe J (2006) Dynamic filaments of the bacterial cytoskeleton. Annu Rev Biochem 75:467–492

    Article  CAS  PubMed  Google Scholar 

  • Miller SI, Salama NR (2018) The gram-negative bacterial periplasm: size matters. PLoS Biol 16(1):e2004935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A, Bouhss A, Diepeveen-de Bruin M, Nguyen-Disteche M, de Kruijff B, Breukink E (2011) Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J 30:1425–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morbach S, Kramer R (2002) Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria. Chembiochem 3:384–397

    Article  CAS  PubMed  Google Scholar 

  • Morgenstein RM, Bratton BP, Nguyen JP, Ouzounov N, Shaevitz JW, Gitai Z (2015) RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proc Natl Acad Sci USA 112:12510–12515

    Article  CAS  PubMed  Google Scholar 

  • Moynihan PJ, Clarke AJ (2011) O-Acetylated peptidoglycan: controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems. Int J Biochem Cell Biol 43:1655–1659

    Article  CAS  PubMed  Google Scholar 

  • Moynihan PJ, Sychantha D, Clarke AJ (2014) Chemical biology of peptidoglycan acetylation and deacetylation. Bioorg Chem 54:44–50

    Article  CAS  PubMed  Google Scholar 

  • Mudd S, Polevitzky K, Anderson TF, Chambers LA (1941) Bacterial morphology as shown by the electron microscope: II. The bacterial cell-wall in the genus Bacillus. J Bacteriol 42:251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mularski A, Wilksch JJ, Wang H, Hossain MA, Wade JD, Separovic F, Strugnell RA, Gee ML (2015) Atomic force microscopy reveals the mechanobiology of lytic peptide action on bacteria. Langmuir 31:6164–6171

    Article  CAS  PubMed  Google Scholar 

  • Münch D, Roemer T, Lee SH, Engeser M, Sahl HG, Schneider T (2012) Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog 8(1):e1002509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray RG, Steed P, Elson HE (1965) The location of the mucopeptide in sections of the cell wall of Escherichia coli and other Gram-negative bacteria. Can J Microbiol 11:547–560

    Article  CAS  PubMed  Google Scholar 

  • Navarre WW, Schneewind O (1999) Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngadjeua F, Braud E, Saidjalolov S, Iannazzo L, Schnappinger D, Ehrt S, Hugonnet JE, Mengin-Lecreulx D, Patin D, Etheve-Quelquejeu M, Fonvielle M, Arthur M (2018) Critical impact of peptidoglycan precursor amidation on the activity of L,D-transpeptidases from Enterococcus faecium and Mycobacterium tuberculosis. Chemistry 24:5743–5747

    Article  CAS  PubMed  Google Scholar 

  • Nicholas RA, Krings S, Tomberg J, Nicola G, Davies C (2003) Crystal structure of wild-type penicillin-binding protein 5 from Escherichia coli: implications for deacylation of the acyl-enzyme complex. J Biol Chem 278:52826–52833

    Article  CAS  PubMed  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593

    Article  CAS  PubMed  Google Scholar 

  • Park JT (1952) Uridine-5′-pyrophosphate derivatives. I Isolation from Staphylococcus aureus. J Biol Chem 194:877–884

    CAS  PubMed  Google Scholar 

  • Park JT (1993) Turnover and recycling of the murein sacculus in oligopeptide permease-negative strains of Escherichia coli: indirect evidence for an alternative permease system and for a monolayered sacculus. J Bacteriol 175:7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JT, Johnson MJ (1949) Accumulation of labile phosphate in Staphylococcus aureus grown in the presence of penicillin. J Biol Chem 179:585–592

    CAS  PubMed  Google Scholar 

  • Park JT, Strominger JL (1957) Mode of action of penicillin. Science 125:99–101

    Article  CAS  PubMed  Google Scholar 

  • Park JT, Uehara T (2008) How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 72:211–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JT, Raychaudhuri D, Li H, Normark S, Mengin-Lecreulx D (1998) MppA, a periplasmic binding protein essential for import of the bacterial cell wall peptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate. J Bacteriol 180:1215–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pende N, Wang J, Weber PM, Verheul J, Kuru E, Rittmann SKR, Leisch N, VanNieuwenhze MS, Brun YV, den Blaauwen T, Bulgheresi S (2018) Host-polarized cell growth in animal symbionts. Curr Biol 28:1039–1051

    Article  CAS  PubMed  Google Scholar 

  • Pennartz A, Genereux C, Parquet C, Mengin-Lecreulx D, Joris B (2009) Substrate-induced inactivation of the Escherichia coli AmiD N-acetylmuramoyl-L-alanine amidase highlights a new strategy to inhibit this class of enzyme. Antimicrob Agents Chemother 53:2991–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichoff S, Shen B, Sullivan B, Lutkenhaus J (2002) FtsA mutants impaired for self-interaction bypass ZipA suggesting a model in which FtsA’s self-interaction competes with its ability to recruit downstream division proteins. Microbiology 83:151–167. https://doi.org/10.1111/j.1365-2958.2011.07923.x. Epub

    Article  CAS  Google Scholar 

  • Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55:1722–1734

    Article  CAS  PubMed  Google Scholar 

  • Pilhofer M, Aistleitner K, Biboy J, Gray J, Kuru E, Hall E, Brun YV, VanNieuwenhze MS, Vollmer W, Horn M, Jensen GJ (2013) Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat Commun 4:2856. https://doi.org/10.1038/ncomms3856

    Article  CAS  PubMed  Google Scholar 

  • Popescu A, Doyle RJ (1996) The Gram stain after more than a century. Biotech Histochem 71:145–151

    Article  CAS  PubMed  Google Scholar 

  • Popham DL (2002) Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell Mol Life Sci 59:426–433

    Article  CAS  PubMed  Google Scholar 

  • Porter JR (1976) Antony van Leeuwenhoek: tercentenary of his discovery of bacteria. Bacteriol Rev 40:260–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra T, Patil S, Mukherjee R (2018) Peptidoglycan in Mycobacteria: chemistry, biology and intervention. Glycoconj J 35:421–432

    Article  CAS  PubMed  Google Scholar 

  • Raymond JB, Mahapatra S, Crick DC, Pavelka MS Jr (2005) Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J Biol Chem 280:326–333

    Article  CAS  PubMed  Google Scholar 

  • Razin S, Argaman M (1963) Lysis of Mycoplasma, bacterial protoplasts, spheroplasts and L-forms by various agents. J Gen Microbiol 30:155–172

    Article  CAS  PubMed  Google Scholar 

  • Reddy M (2007) Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J Bacteriol 189:98–108

    Article  CAS  PubMed  Google Scholar 

  • Reith J, Mayer C (2011) Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl Microbiol Biotechnol 92:1–11

    Article  CAS  PubMed  Google Scholar 

  • Reizer J, Saier MH Jr, Deutscher J, Grenier F, Thompson J, Hengstenberg W (1988) The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation. Crit Rev Microbiol 15:297–338

    Article  CAS  PubMed  Google Scholar 

  • Remaut H, Bompard-Gilles C, Goffin C, Frere JM, Van Beeumen J (2001) Structure of the Bacillus subtilis D-aminopeptidase DppA reveals a novel self-compartmentalizing protease. Nat Struct Biol 8:674–678

    Article  CAS  PubMed  Google Scholar 

  • Rogers HJ (1974) Peptidoglycans (mucopeptides): structure, function, and variations. Ann N Y Acad Sci 235:29–51

    Article  CAS  PubMed  Google Scholar 

  • Rojas E, Theriot JA, Huang KC (2014) Response of Escherichia coli growth rate to osmotic shock. Proc Natl Acad Sci USA 111:7807–7812

    Article  CAS  PubMed  Google Scholar 

  • Romeis T, Höltje JV (1994) Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. Eur J Biochem 224:597–604

    Article  CAS  PubMed  Google Scholar 

  • Rowlett VW, Margolin W (2015) The bacterial divisome: ready for its close-up. Philos Trans R Soc Lond Ser B Biol Sci 370(1679). https://doi.org/10.1098/rstb.2015.0028

    Article  CAS  Google Scholar 

  • Ruane KM, Lloyd AJ, Fulop V, Dowson CG, Barreteau H, Boniface A, Dementin S, Blanot D, Mengin-Lecreulx D, Gobec S, Dessen A, Roper DI (2013) Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex. J Biol Chem 288:33439–33448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rueff AS, Chastanet A, Dominguez-Escobar J, Yao Z, Yates J, Prejean MV, Delumeau O, Noirot P, Wedlich-Soldner R, Filipe SR, Carballido-Lopez R (2014) An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis. Mol Microbiol 91:348–362

    Article  CAS  PubMed  Google Scholar 

  • Ruiz N (2008) Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc Natl Acad Sci USA 105:15553–15557

    Article  CAS  Google Scholar 

  • Salje J, van den Ent F, de Boer P, Lowe J (2011) Direct membrane binding by bacterial actin MreB. Mol Cell 43:478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salton MR (1994) The bacterial cell envelope – a historical perspective. In: Ghuysen J-M, Hakenbeck R (eds) Bacterial cell wall, vol 29. Elsevier, Amsterdam, pp 1–22

    Google Scholar 

  • Salton MR, Horne RW (1951) Studies of the bacterial cell wall. II Methods of preparation and some properties of cell walls. Biochim Biophys Acta 7:177–197

    Article  CAS  PubMed  Google Scholar 

  • Sathiyamoorthy K, Vijayalakshmi J, Tirupati B, Fan L, Saper MA (2017) Structural analyses of the Haemophilus influenzae peptidoglycan synthase activator LpoA suggest multiple conformations in solution. J Biol Chem 292:17626–17642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258

    Article  CAS  PubMed  Google Scholar 

  • Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69:585–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuring S, Dufrene YF (2010) Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol Microbiol 75:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Scheurwater E, Reid CW, Clarke AJ (2008) Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 40:586–591

    Article  CAS  PubMed  Google Scholar 

  • Schlag M, Biswas R, Krismer B, Kohler T, Zoll S, Yu W, Schwarz H, Peschel A, Gotz F (2010) Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol 75:864–873

    Article  CAS  PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt KL, Peterson ND, Kustusch RJ, Wissel MC, Graham B, Phillips GJ, Weiss DS (2004) A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J Bacteriol 186:785–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond Ser B Biol Sci 367:1123–1139

    Article  CAS  Google Scholar 

  • Schneewind O, Fowler A, Faull KF (1995) Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268:103–106

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Seltmann G, Holst O (2002) Periplasmic space and rigid layer. In: Seltmann G, Holst O (eds) The bacterial cell wall. Springer-Verlag, Berlin, pp 103–132

    Chapter  Google Scholar 

  • Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N (2014) Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345:220–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sham LT, Zheng S, Yakhnina AA, Kruse AC, Bernhardt TG (2018) Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP-family flippases. Mol Microbiol 109:633–641

    Article  CAS  PubMed  Google Scholar 

  • Shida T, Hattori H, Ise F, Sekiguchi J (2000) Overexpression, purification, and characterization of Bacillus subtilis N-acetylmuramoyl-L-alanine amidase CwlC. Biosci Biotech Bioch 64:1522–1525

    Article  CAS  Google Scholar 

  • Shida T, Hattori H, Ise F, Sekiguchi J (2001) Mutational analysis of catalytic sites of the cell wall lytic N-acetylmuramoyl-L-alanine amidases CwlC and CwlV. J Biol Chem 276:28140–28146

    Article  CAS  PubMed  Google Scholar 

  • Shockman GD, Daneo-Moore L, Kariyama R, Massidda O (1996) Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. Microb Drug Resist 2:95–98

    Article  CAS  PubMed  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. https://doi.org/10.1101/cshperspect.a000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small E, Addinall SG (2003) Dynamic FtsZ polymerization is sensitive to the GTP to GDP ratio and can be maintained at steady state using a GTP-regeneration system. Microbiology 149:2235–2242

    Article  CAS  PubMed  Google Scholar 

  • Smith CA (2006) Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 362:640–655

    Article  CAS  PubMed  Google Scholar 

  • Smith TJ, Blackman SA, Foster SJ (2000) Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249–262

    Article  CAS  PubMed  Google Scholar 

  • Sobhanifar S, King DT, Strynadka NC (2013) Fortifying the wall: synthesis, regulation and degradation of bacterial peptidoglycan. Curr Opin Struct Biol 23:695–703

    Article  CAS  PubMed  Google Scholar 

  • Squeglia F, Ruggiero A, Berisio R (2018) Chemistry of peptidoglycan in Mycobacterium tuberculosis life cycle: an off-the-wall balance of synthesis and degradation. Chemistry 24:2533–2546

    Article  CAS  PubMed  Google Scholar 

  • Strahl H, Errington J (2017) Bacterial membranes: structure, domains, and function. Annu Rev Microbiol 71:519–538

    Article  CAS  PubMed  Google Scholar 

  • Strominger JL, Tipper DJ (1965) Bacterial cell wall synthesis and structure in relation to the mechanism of action of penicillins and other antibacterial agents. Am J Med 39:708–721

    Article  CAS  PubMed  Google Scholar 

  • Sudiarta IP, Fukushima T, Sekiguchi J (2010) Bacillus subtilis CwlQ (previous YjbJ) is a bifunctional enzyme exhibiting muramidase and soluble-lytic transglycosylase activities. Biochem Biophys Res Commun 398:606–612

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi S, DiLuzio WR, Weibel DB, Whitesides GM (2005) Controlling the shape of filamentous cells of Escherichia coli. Nano Lett 5:1819–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templin MF, Ursinus A, Höltje JV (1999) A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J 18:4108–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA 54:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Tipper DJ, Strominger JL, Ensign JC (1967) Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. VII Mode of action of the bacteriolytic peptidase from Myxobacter and the isolation of intact cell wall polysaccharides. Biochemistry 6:906–920

    Article  CAS  PubMed  Google Scholar 

  • Ton-That H, Liu G, Mazmanian SK, Faull KF, Schneewind O (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci USA 96:12424–12429

    Article  CAS  PubMed  Google Scholar 

  • Touhami A, Jericho MH, Beveridge TJ (2004) Atomic force microscopy of cell growth and division in Staphylococcus aureus. J Bacteriol 186:3286–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner RD, Hobbs JK, Foster SJ (2016) Atomic force microscopy analysis of bacterial cell wall peptidoglycan architecture. Methods Mol Biol 1440:3–9

    Article  CAS  PubMed  Google Scholar 

  • Turner RD, Mesnage S, Hobbs JK, Foster SJ (2018) Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat Commun 9(1):1263. https://doi.org/10.1038/s41467-018-03551-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136

    Article  CAS  Google Scholar 

  • Uehara T, Bernhardt TG (2011) More than just lysins: peptidoglycan hydrolases tailor the cell wall. Curr Opin Microbiol 14:698–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Park JT (2003) Identification of MpaA, an amidase in Escherichia coli that hydrolyzes the gamma-D-glutamyl-meso-diaminopimelate bond in murein peptides. J Bacteriol 185:679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Park JT (2004) The N-acetyl-D-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol 186:7273–7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Suefuji K, Valbuena N, Meehan B, Donegan M, Park JT (2005) Recycling of the anhydro-N-acetylmuramic acid derived from cell wall murein involves a two-step conversion to N-acetylglucosamine-phosphate. J Bacteriol 187:3643–3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Suefuji K, Jaeger T, Mayer C, Park JT (2006) MurQ etherase is required by Escherichia coli in order to metabolize anhydro-N-acetylmuramic acid obtained either from the environment or from its own cell wall. J Bacteriol 188:1660–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Parzych KR, Dinh T, Bernhardt TG (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29:1412–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G, Ouzounov N, Gitai Z, Shaevitz JW, Huang KC (2014) Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci USA 111:E1025–E1034

    Article  CAS  PubMed  Google Scholar 

  • van Dam V, Sijbrandi R, Kol M, Swiezewska E, de Kruijff B, Breukink E (2007) Transmembrane transport of peptidoglycan precursors across model and bacterial membranes. Mol Microbiol 64:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44

    Article  PubMed  CAS  Google Scholar 

  • van den Ent F, Johnson CM, Persons L, de Boer P, Lowe J (2010) Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J 29:1081–1090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Ent F, Izore T, Bharat TA, Johnson CM, Lowe J (2014) Bacterial actin MreB forms antiparallel double filaments. elife 3:e02634. https://doi.org/10.7554/eLife.02634

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Ploeg R, Goudelis ST, den Blaauwen T (2015) Validation of FRET assay for the screening of growth inhibitors of Escherichia coli reveals elongasome assembly dynamics. Int J Mol Sci 16:17637–17654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Heijenoort J (2001) Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep 18:503–519

    Article  PubMed  CAS  Google Scholar 

  • van Heijenoort J (2007) Lipid intermediates in the biosynthesis of bacterial peptidoglycan. Microbiol Mol Biol Rev 71:620–635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Heijenoort J (2011) Peptidoglycan hydrolases of Escherichia coli. Microbiol Mol Biol Rev 75:636–663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Heijenoort Y, Leduc M, Singer H, van Heijenoort J (1987) Effects of moenomycin on Escherichia coli. J Gen Microbiol 133:667–674

    PubMed  Google Scholar 

  • van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci USA 108:15822–15827

    Article  PubMed  Google Scholar 

  • van Teeseling MC, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, VanNieuwenhze MS, Kartal B, van Niftrik L (2015) Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun 6:6878. https://doi.org/10.1038/ncomms7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilcheze C, Kremer L (2017) Acid-fast positive and acid-fast negative Mycobacterium tuberculosis: the Koch paradox. Microbiol Spectr 5(2). https://doi.org/10.1128/microbiolspec.TBTB2-0003-2015

  • Villa E, Schaffer M, Plitzko JM, Baumeister W (2013) Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol 23:771–777

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W (2008) Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 32:287–306

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W (2012) Bacterial growth does require peptidoglycan hydrolases. Mol Microbiol 86:1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778:1714–1734

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Höltje JV (2001) Morphogenesis of Escherichia coli. Curr Opin Microbiol 4:625–633

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Höltje JV (2004) The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s)? J Bacteriol 186:5978–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer W, Seligman SJ (2010) Architecture of peptidoglycan: more data and more models. Trends Microbiol 18:59–66

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Tomasz A (2000) The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J Biol Chem 275:20496–20501

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Blanot D, de Pedro MA (2008a) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Joris B, Charlier P, Foster S (2008b) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286

    Article  CAS  PubMed  Google Scholar 

  • Vötsch W, Templin MF (2000) Characterization of a β-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and β-lactamase induction. J Biol Chem 275:39032–39038

    Article  PubMed  Google Scholar 

  • Wang X, Huang J, Mukherjee A, Cao C, Lutkenhaus J (1997) Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179:5551–5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Khattar MK, Donachie WD, Lutkenhaus J (1998) FtsI and FtsW are localized to the septum in Escherichia coli. J Bacteriol 180:2810–2816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JB (1973) The chain length of the glycans in bacterial cell walls. Biochem J 133:395–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidel W, Pelzer H (1964) Bagshaped macromolecules − a new outlook on bacterial cell walls. Adv Enzymol 26:193–232

    Google Scholar 

  • Weidel W, Primosigh J (1958) Biochemical parallels between lysis by virulent phage and lysis by penicillin. J Gen Microbiol 18:513–517

    Article  CAS  PubMed  Google Scholar 

  • Weidel W, Frank H, Martin HH (1960) The rigid layer of the cell wall of Escherichia coli strain B. J Gen Microbiol 22:158–166

    Article  CAS  PubMed  Google Scholar 

  • Weiss DS, Pogliano K, Carson M, Guzman L-M, Fraipont C, Nguyen-Distèche M, Losick R, Beckwith J (1997) Localization of the Escherichia coli cell division protein FtsI (PBP3) to the division site and cell pole. Mol Microbiol 25:671–681

    Article  CAS  PubMed  Google Scholar 

  • Wheeler R, Turner RD, Bailey RG, Salamaga B, Mesnage S, Mohamad SA, Hayhurst EJ, Horsburgh M, Hobbs JK, Foster SJ (2015) Bacterial cell enlargement requires control of cell wall stiffness mediated by peptidoglycan hydrolases. mBio 6(4):e00660. https://doi.org/10.1128/mBio.00660-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White CL, Kitich A, Gober JW (2010) Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol Microbiol 76:616–633

    Article  CAS  PubMed  Google Scholar 

  • Wild J, Hennig J, Lobocka M, Walczak W, Klopotowski T (1985) Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. Mol Gen Genet 198:315–322

    Article  CAS  PubMed  Google Scholar 

  • Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    Article  CAS  PubMed  Google Scholar 

  • Witholt B, Boekhout M (1978) The effect of osmotic shock on the accessibility of the murein layer of exponentially growing Escherichia coli to lysozyme. Biochim Biophys Acta 508:296–305

    Article  CAS  PubMed  Google Scholar 

  • Wolf SG, Houben L, Elbaum M (2014) Cryo-scanning transmission electron tomography of vitrified cells. Nat Methods 11:423–428

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Miyake Y, Hisaoka M, Kurosawa S, Sekiguchi J (2008) The major and minor wall teichoic acids prevent the sidewall localization of vegetative DL-endopeptidase LytF in Bacillus subtilis. Mol Microbiol 70:297–310

    Article  CAS  PubMed  Google Scholar 

  • Yang DC, Peters NT, Parzych KR, Uehara T, Markovski M, Bernhardt TG (2011) An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci USA 108:E1052–E1060

    Article  PubMed  Google Scholar 

  • Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J (2017) GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355:744–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Jericho M, Pink D, Beveridge T (1999) Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J Bacteriol 181:6865–6875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young KD (2003) Bacterial shape. Mol Microbiol 49:571–580

    Article  CAS  PubMed  Google Scholar 

  • Young KD (2010) Bacterial shape: two-dimensional questions and possibilities. Annu Rev Microbiol 64:223–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapun A, Vernet T, Pinho MG (2008) The different shapes of cocci. FEMS Microbiol Rev 32:345–360

    Article  CAS  PubMed  Google Scholar 

  • Zawadzke LE, Bugg TD, Walsh CT (1991) Existence of two D-alanine:D-alanine ligases in Escherichia coli: cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry 30:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Patel V, Helmann JD, Dörr T (2017) Don’t let sleeping dogmas lie: new views of peptidoglycan synthesis and its regulation. Mol Microbiol 106:847–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JY, Yang Y, Han H, Betzi S, Olesen SH, Marsilio F, Schönbrunn E (2012) Functional consequence of covalent reaction of phosphoenolpyruvate with UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). J Biol Chem 287:12657–12667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipperle GF Jr, Ezzell JW Jr, Doyle RJ (1984) Glucosamine substitution and muramidase susceptibility in Bacillus anthracis. Can J Microbiol 30:553–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CM thanks Marina and Florian Alexander for their support to finish up this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walter, A., Mayer, C. (2019). Peptidoglycan Structure, Biosynthesis, and Dynamics During Bacterial Growth. In: Cohen, E., Merzendorfer, H. (eds) Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-12919-4_6

Download citation

Publish with us

Policies and ethics