Skip to main content
Log in

Cytokine-induced selective increase of high-molecular-weight bFGF isoforms and their subcellular kinetics in cultured rat hippocampal astrocytes

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and epidermal growth factor (EGF) are probable factors responsible for up-regulation of basic fibroblast growth factor (bFGF) expression in reactive astrocytes following brain damage, however the effect of these cytokines on the expression of each bFGF-isoform has not been elucidated. Western biot analysis revealed the expression of 18, 22 and 24-kD bFGF isoforms in cultured rat hippocampal astrocytes, and the expression of high molecular weight (HMW)-isoforms (22 and 24-kD isoforms) but not of 18-kD isoform was selectively increased by cytokines. Immunofluorescent analysis demonstrated that bFGF content in the cytoplasm of astrocytes is initially increased by cytokines followed by nuclear targeting and localization in agreement with the previous evidence that HMW-isoforms possess a nuclear targeting signal. The present results suggest the important role of HMW-bFGF isoforms in the response of nervous tissue to injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gospodarowiez, D., Cheng, J., Lui, G. M., Baird, A., and Bohlen, P. 1984. Isolation of brain fibroblast growth factor by heparinsepharose affinity chromatography: identity with pituitary fibroblast growth factor. Proc. Natl. Acad. Sci. USA 81:6963–6967.

    Article  Google Scholar 

  2. Moscatelli, D., Joseph-Silverstein, J., Manejias, R., and Rifkin, D. B. 1987. Mr 25,000 heparin-binding protein from guinea pig brain is a high molecular weight form of basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 84:5778–5782.

    Article  PubMed  CAS  Google Scholar 

  3. Sommer, A., Brewer, M. T., Thompson, R. C., Moscatelli, D., Presta, M., and Rifkin, D. B. 1987. A form of human basic fibroblast growth factor with an extended amino terminus. Biochem. Biophys. Res. Commun. 144:543–550.

    Article  PubMed  CAS  Google Scholar 

  4. Florkiewicz, R. Z., and Sommer, A. 1989. Human basic fibroblast growth factor gene encodes four polypeptides: Three initiate translation from non-AUG codons. Proc. Natl. Acad. Sci. USA 86:3978–3981.

    Article  PubMed  CAS  Google Scholar 

  5. Prats, H., Kaghad, M., Prats, A. C., Klagsbrun, M., Lelias, J. M., Liauzun, P., Chalon, P., Tauber, J. P., Amalric, F., Smith, J. A., and Caput, D. 1989. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc. Natl. Acad. Sci. USA 86:1836–1840.

    Article  PubMed  CAS  Google Scholar 

  6. Renko, M., Quarto, N., Morimoto, T., and Rifkin, D. B. 1990. Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J. Cell Physiol. 144:108–114.

    Article  PubMed  CAS  Google Scholar 

  7. Bugler, B., Amalric, F., and Prats, H. 1991. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol. Cell. Biol. 11:573–577.

    PubMed  CAS  Google Scholar 

  8. Quarto, N., Talarico, D., Florkiewicz, R., and Rifkin, D. B. 1991. Selective expression of high molecular weight basic fibroblast growth factor confers a unique phenotype to NIH 3T3 cells. Cell Regul 2:699–708.

    PubMed  CAS  Google Scholar 

  9. Anderson, K. J., Dam, D., Lee, S., and Cotman, C. W. 1988. Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 332:360–361.

    Article  PubMed  CAS  Google Scholar 

  10. Grothe, C., and Unsicker, K. 1992. Basic fibroblast growth factor in the hypoglossal system: Specific retrograde transport, trophic, and lesion-related responses. J. Neurosci. Res. 32:317–328.

    Article  PubMed  CAS  Google Scholar 

  11. Otto, D., and Unsicker, K. 1990. Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J. Neurosci. 10:1912–1921.

    PubMed  CAS  Google Scholar 

  12. Finkelstein, S. P., Apostolides, P. J., Caday, C. G., Prosser, J., Philips, M. F., and Klagsbrun, M. 1988. Increased basic fibroblast growth factor (bFGF) immunoreactivity at the site of focal brain wounds. Brain Res. 460:253–259.

    Article  Google Scholar 

  13. Gomez-Pinilla, F., Lee, J. W.-K., and Cotman, C. W. 1992. Basic FGF in adult rat brain: Cellular distribution and response to entorhinal lesion and fimbria-formix transection. J. Neurosci., 12:345–355.

    PubMed  CAS  Google Scholar 

  14. Nieto-Sampedro, M., and Berman, M. A. 1987. Interleukin-1-like activity in rat brain: sources, targets, and effects of injury. J. Neurosci. Res. 17:214–219.

    Article  PubMed  CAS  Google Scholar 

  15. Heiter, E., Ayala, J., Bousseau, A., Denefle, P., and Prochiantz, A. 1990. Amoeboid microglial cells and not astrocytes synthesize TNF-α in Swiss mouse brain cell cultures. Eur. J. Neurosci. 2:762–768.

    Article  Google Scholar 

  16. Yoshida, K., and Gage, F. H. 1991. Fibroblast growth factors stimulate nerve growth factor synthesis and secretion by astrocytes. Brain Res. 538:118–126.

    Article  PubMed  CAS  Google Scholar 

  17. Rivera, S., Gold, S. J., and Gall, C. M. 1994. Interleukin-1β increases basic fibroblast growth factor mRNA expression in adult rat brain and organotypic hippocampal cultures. Mol. Brain Res. 27:12–26.

    Article  PubMed  CAS  Google Scholar 

  18. Florkiewicz, R. Z., Baird, A., and Gonzalez, A. M. 1991. Multiple forms of bFGF: Differential nuclear and cell surface localization. Growth Factors 4:265–275.

    PubMed  CAS  Google Scholar 

  19. Quarto, N., Finger, F. P., and Rifkin, D. B. 1991. The NH2-terminal extension of high molecular weight bFGF is a nuclear targeting signal. J. Cell. Physiol. 147:311–318.

    Article  PubMed  CAS  Google Scholar 

  20. Hetier, E., Ayala, J., Denefle, P., Bousseau, A., Rouget, P., Mallat, M., and Prochiantz, A. 1988. Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro. J. Neurosci. Res. 21:391–397.

    Article  PubMed  CAS  Google Scholar 

  21. Byyny, R. L., Orth, D. N., Cohen, S., and Doyne, E. S. 1974. Epidermal growth factor: effects of androgens and adrenergic agents. Endocrinology 95:776–782.

    PubMed  CAS  Google Scholar 

  22. Hirata, Y., Uchihashi, M., Nakajima, H., Fujita, T., and Matsukura, S. 1982. Presence of human epidermal growth factor in human cerebrospinal fluid. J. Clin. Endocrinol. Metab. 55:1174–1177.

    Article  PubMed  CAS  Google Scholar 

  23. Spranger, M., Lindholm, D., Bandtlow, C., Heumann, R., Gnahn, H., Naher-Noe, M., and Thoenen, H. 1990. Regulation of nerve growth factor (NGF) synthesis in the rat central nervous system: Comparison between the effects of interleukin-1 and various growth factors in astrocyte cultures and in vivo. Eur. J. Neurosci. 2:69–76.

    Article  PubMed  Google Scholar 

  24. Yoshida, K., and Gage, F. H. 1992. Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines. Brain Res. 569:14–25.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshida, K., Kakihana, M., Chen, L. S., Ong, M., Baird, A., and Gage, F. H. 1992. Cytokine regulation of nerve growth factormediated cholinergic neurotrophic activity synthesized by astrocytes and fibroblasts. J. Neurochem. 59:919–931.

    Article  PubMed  CAS  Google Scholar 

  26. Kamiguchi, H., Yoshida, K., Sagoh, M., Sasaki, H., Inaba, M., Wakamoto, H., Otani, M., and Toya, S. 1995. Release of ciliary neurotrophic factor from cultured astrocytes and its modulation by cytokines. Neurochem. Res. 20:1187–1193.

    Article  PubMed  CAS  Google Scholar 

  27. Rogelj, S., Weinberg, R. A., Fanning, P., and Klagsbrun, M. 1988. Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 331:173–175.

    Article  PubMed  CAS  Google Scholar 

  28. Gately, S., Tsanaclis, A. M. C., Takano, S., Klagsbrun, M., and Brem, S. 1995. Cells transfected with the basic fibroblast growth factor gene fused to a signal sequence are invasive in vitro and in situ in the brain. Neurosurgery 36:780–788.

    PubMed  CAS  Google Scholar 

  29. Couderc, B., Prats, H., Bayard, F., and Amalric, F. 1991. Potential oncogenic effects of basic fibroblast growth factor requires cooperation between CUG and AUG-initiated forms. Cell Regul. 2:709–718.

    PubMed  CAS  Google Scholar 

  30. Presta, M., Statuto, M., Rusnati, M., Dell’Era, P., and Ragnotti, G. 1989. Characterization of a Mr 25,000 basic fibroblast growth factor form in adult, regnerating, and fetal rat liver. Biochem. Biophys. Res. Commun. 164:1182–1189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiguchi, H., Yoshida, K., Wakamoto, H. et al. Cytokine-induced selective increase of high-molecular-weight bFGF isoforms and their subcellular kinetics in cultured rat hippocampal astrocytes. Neurochem Res 21, 701–706 (1996). https://doi.org/10.1007/BF02527728

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02527728

Key Words

Navigation