Skip to main content
Log in

Hydrolysis of used frying palm olein and sunflower oil catalyzed by porcine pancreatic lipase

  • Article
  • Published:
Lipids

Abstract

The enzymatic hydrolysis of frying used vegetable oils with different degrees of alteration were measured using porcine pancreatic lipase (acylglycerol acylhydrolase EC 3.1.1.3). Successive frying of potatoes significantly increased the level of total polar lipid content in the palm olein from 9.3±0.1 mg/100 mg oil to 26.4±0.3 mg/100 mg oil after 90 fryings, and from 4.0±0.1 mg/100 mg oil to 27.7±0.3 mg/100 mg oil in sunflower oil after 60 fryings. Triacylglycerol polymers, triacylglycerol dimers, and oxidized triacylglycerols also increased 37-, 7.9-, and 7.5-times in palm olein, respectively, and 56-, 22-, and 4.7-times in sunflower oil, respectively. However, diacylglycerols and free fatty acid levels related to hydrolytic alteration did not increase with the number of fryings in both oils. The substrate concentration in the reactor was determined by calculating the molecular weight of each oil showing a different degree of alteration. We compared the methodology used by us and that used by other authors. The results show that the methods are reproducible and that the values obtained are in concordance with theoretical values. The kinetic parameters apparent Michaelis-Menten constant (K appM ) and apparent maximum velocity of hydrolysis (V appmax ) were different in unused palm olein (5.1±0.7 and 166±7.6, respectively) than in sunflower oil (2.2±0.3 and 62±2.2, respectively). However, changes inK appM andV appmax were not related to the degree of alteration of the oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

FID:

flame-ionization detector

HPLC:

high-performance liquid chromatography

HPSEC:

high-performance size exclusion chromatography

K appM :

apparent Michaelis-Menten constant

MW:

molecular weight

PEG:

polyethylene glycol

rt :

retention time

THF:

tetrahydrofuran

V appmax :

apparent maximum velocity of hydrolysis

References

  1. Sémériva, M., and Desnuelle, P. (1979) Pancreatic Lipase and Colipase. An Example of Heterogeneous Biocatalysis,Adv. Enzymol. 48, 319–370.

    PubMed  Google Scholar 

  2. Chapus, C., Rovery, M., Sarda, L., and Verger, R. (1988) Minireview on Pancreatic Lipase and Colipase,Biochimie 70, 1223–1234.

    Article  PubMed  CAS  Google Scholar 

  3. Jensen, R.G., deJong, F.A., and Clark, R.M. (1983) Determination of Lipase Specificity,Lipids 18, 239–252.

    PubMed  CAS  Google Scholar 

  4. Chang, S.S., Peterson, R.J., and Ho, C.-T. (1978) Chemical Reactions Involved in the Deep-Fat Frying of Foods,J. Am. Oil Chem. Soc. 55, 718–727.

    PubMed  CAS  Google Scholar 

  5. Gutiérrez González-Quijano, R., and Dobarganes, M.C. (1988) Analytical Procedures for the Evaluation of Used Frying Fats, inFrying of Food. Principles, Changes and New Approaches (Varela, G., Bender, A.E., and Morton, I.D., eds.) pp. 141–154, Ellis Horwood Ltd., Chichester.

    Google Scholar 

  6. Dobarganes, M.C., Pérez-Camino, M.C., and Márquez-Ruiz, G. (1988) High-Performance Size Exclusion Chromatography of Polar Compounds in Heated and Non-Heated Fats,Fat Sci. Technol. 90, 308–311.

    CAS  Google Scholar 

  7. Arroyo, R., Cuesta, C., Garrido-Polonio, M.C., López-Varela, S., and Sánchez-Muniz, F.J. (1992) High-Performance Size-Exclusion Chromatographic Studies on Polar Compounds Formed in Sunflower Oil Used for Frying,J. Am. Oil Chem. Soc. 69, 557–563.

    CAS  Google Scholar 

  8. Potteau, B., Grandgirard, A., Lhuissier, M., and Causeret, J. (1977) Recherches Végetables Sur les Effects Physiopathologiques d'Huiles Végetables Chauffées,Bibliotheca Nutr. Dieta 25, 122–133.

    CAS  Google Scholar 

  9. Cuesta, C., Sánchez-Muniz, F.J., and Varela, G. (1988) Nutritive Value of Frying Fats, inFrying of Food. Principles, Changes and New Approaches (Varela, G., Bender, A.E., and Morton, I.D., eds.) pp. 82–90, Ellis Horwood Ltd., Chichester.

    Google Scholar 

  10. López-Varela, S., Sánchez-Muniz, F.J., and Cuesta, C. (1995) Decrease Food Efficiency Ratio, Growth Retardation and Changes in Liver Composition in Rats Consuming Thermoxidized and Polymerized Frying Sunflower Oil,Fd. Chem. Toxic. 33, 181–189.

    Article  Google Scholar 

  11. Miyashita, K., Takagi, T., and Frankel, E.N. (1990) Preferential Hydrolysis of Monohydroperoxides of Linoleoyl and Linolenoyl Triacylglycerol by Pancreatic Lipase,Biochim. Biophys. Acta 1045, 233–238.

    PubMed  CAS  Google Scholar 

  12. Márquez-Ruiz, G., Pérez-Camino, M.C., and Dobarganes, M.C. (1992)In Vitro Action of Pancreatic Lipase on Complex Glycerides from Thermally Oxidized Oils,Fat. Sci. Technol. 94, 307–311.

    Google Scholar 

  13. Berger, K.G. (1989) Problems and Opportunities in Market Development of Oils, inFats for the Future (Cambie, R.C., ed.) pp. 217–232, Ellis Horwood Ltd., Chichester.

    Google Scholar 

  14. Gupta, M.K. (1993) Designing Frying Fat, inProccedings of the World Conference on Oilseed Technology and Utilization (Applewhite, T.H., ed.) pp. 204–208, AOCS Press, Illinois.

    Google Scholar 

  15. International Union of Pure and Applied Chemistry, (1987) Preparation of Fatty Acid Methyl Esters, inStandard Methods for the Analysis of Oils, Fats and Derivatives, 7th edn., Method 2.301, Blackwell, Oxford.

    Google Scholar 

  16. Waltking, A.E., and Wessels, H. (1981) Chromatographic Separation of Polar and Nonpolar Components of Frying Fats,J. Assoc. Off. Anal. Chem. 64, 1329–1330.

    CAS  Google Scholar 

  17. Sánchez-Muniz, F.J., Cuesta, C., López-Varela, S., Garrido-Polonio, M.C., and Arroyo, R. (1993) Evaluation of the Thermal Oxidation Rate Sunflower Oil Using Various Frying Treatments, inProccedings of the World Conference on Oilseed Technology and Utilization (Applewhite, T.H., ed.) pp. 448–452, AOCS Press, Illinois.

    Google Scholar 

  18. Husain, S., Sastry, G.S.R., Prasada Raju, N., and Narasimha, R. (1988) High-Performance Size-Exclusion Chromatography of Oils and Fats,J. Chromatog. 454, 317–326.

    Article  CAS  Google Scholar 

  19. Bardsley, W.G. (1995) SIMFIT 3.86:A Computer Package for Simulation, Curve Fitting and Statistical Analysis in the Life Sciences, Manchester University, United Kingdom.

    Google Scholar 

  20. Mustranta, A. (1992) Use of Lipases in the Resolution of Racemic Ibuprofen,Appl. Microbiol. Biotechnol. 38, 61–66.

    Article  PubMed  CAS  Google Scholar 

  21. Arzoglou, P. (1994) Titrimetric Assay of Pancreatic Lipase: State-of-the-Art,Ann. Biol. Clin. 52, 165–170.

    CAS  Google Scholar 

  22. Fedeli, E. (1988) The Behavior of Olive Oil During Cooking and Frying, inFrying of Food, Principles, Changes and New Approaches (Varela, G., Bender, A.E., and Morton, I.D., eds.) pp. 52–81, Ellis Horwood Ltd., Chichester.

    Google Scholar 

  23. Holland, B., Welch, A.A., Unwin, I.D., Buss, D.H., Paul, A.A., and Southgate, D.A.T. (1991) inMcCance and Widdowson's The Composition of Foods, 5th. edn., Royal Society of Chemistry, Cambridge.

    Google Scholar 

  24. Gere, A. (1982) Studies of the Changes in Edible Fats During Heating and Frying,Nahrung 26, 923–932.

    Article  CAS  Google Scholar 

  25. Permanyer, J.J., and Boatella, J. (1977) Aceites Calentados: Modificaciones Físico-Químicas de Interés Bromatológico. Estudio Preliminar,Anal. Bromatol. 24, 489–496.

    Google Scholar 

  26. Stevenson, S.G., Vaisey-Genser, M., and Eskin, N.A.M., (1984) Quality Control in the Use of Deep Frying Oils,J. Am. Oil Chem. Soc. 61, 1102–1108.

    CAS  Google Scholar 

  27. Sebedio, J.-L., Grandgirard, A., Septier, Ch., and Prevost, J. (1987) Etat d'Altération de Quelques Huiles de Friture Prélevées en Restauration,Rev. Franç. Corps Gras. 34, 15–18.

    CAS  Google Scholar 

  28. Kupranycz, D.B., Amer, M.A., and Baker, B.E. (1986) Effects of Thermal Oxidation on the Constitution of Butterfat, Butterfat Fractions and Certain Vegetable Oils,J. Am. Oil Chem. Soc. 63, 332–337.

    CAS  Google Scholar 

  29. Henderson, R.J., Burkow, I.C., and Millar, R.M. (1993) Hydrolysis of Fish Oils Containing Polymers of Triacylglycerols by Pancreatic Lipasein Vitro, Lipids 28, 313–319.

    PubMed  CAS  Google Scholar 

  30. Yoshida, H., and Alexander, J.C. (1983) Enzymatic Hydrolysis of Fractionated Products from Oils Thermally Oxidized in the Laboratory,Lipids 18, 402–407.

    PubMed  CAS  Google Scholar 

  31. Blumenthal, M.M. (1991) A New Look at the Chemistry and Physics of Deep-Fat Frying,Food Technol. 45, 68–71.

    Google Scholar 

  32. Yang, L.-Y., Kuksis, A., and Myher, J.J. (1990) Lipolysis of Menhaden Oil Triacylglycerols and the Corresponding Fatty Acid Alkyl Esters by Pancreatic Lipasein Vitro: a Reexamination,J. Lipid Res. 31, 137–147.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Arroyo, R., Sánchez-Muniz, F.J., Cuesta, C. et al. Hydrolysis of used frying palm olein and sunflower oil catalyzed by porcine pancreatic lipase. Lipids 31, 1133–1139 (1996). https://doi.org/10.1007/BF02524287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524287

Keywords

Navigation