Skip to main content
Log in

Plasma membrane coenzyme Q10 and growth control

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Coenzyme Q is distributed among cellular membranes and it has a significant concentration at the plasma membrane. The plasma membrane contains a trans-membrane electron transport system, which is centered on coenzyme Q. This molecule is maintained reduced by NAD(P)H-dependent enzymes and can reduce other antioxidants such as tocopheroxyl quinone and ascorbate free radical. Its antioxidant property and its ability to maintain in the reduced state the other antioxidants offers a system to protect membrane components against oxidations and prevents oxidative-stress-dependent cellular damage. Growth factor withdrawal induces cell growth arrest and apoptosis through an oxidative-stress-induced pathway. Coenzyme Q can stimulate growth of different cell lines under serum deficiency, mainly by preventing apoptosis. The protection caused by coenzyme Q is independent of the Bcl-2 protein. Plasma membrane coenzyme Q appears to be essential in the regulation of the redox equilibrium of the cell and redox-dependent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcaín FJ, Burón I, Rodriguez-Aguilera JC, Villalba JM, Navas P (1990) Ascorbate free radical stimulates the growth of a human promyelocytic leukemia cell line. Cancer Res 50: 5887–5891

    PubMed  Google Scholar 

  • Anderson R, Oosthuizen R, Maritz R, Theron A, van Rensbur AJ (1980) The effect of increasing weekly doses of ascorbate in certain cellular and humoral immune functions in normal volunteers. Am J Clin Nutr 33: 71–76

    PubMed  CAS  Google Scholar 

  • Barroso MP (1998) Control del crecimiento y la muerte celular por la membrana plasmática. Tesis Doctoral, Universidad de Córdoba, Córdoba, Spain

    Google Scholar 

  • —, Gómez-Díaz C, López-Lluch G, Malagón MM, Crane FL, Navas P (1997a) Ascorbate and α-tocopherol prevent apoptosis induced by serum removal independent of Bcl-2. Arch Biochem Biophys 334: 261–267

    Google Scholar 

  • — —, Villalba JM, Burón MI, López-Lluch G, Navas P (1997b) Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal. J Bioenerg Biomembr 29: 259–267

    Article  PubMed  CAS  Google Scholar 

  • Beyer RE (1994) The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q. J Bioenerg Biomembr 26: 349–358

    Article  PubMed  CAS  Google Scholar 

  • Clarke CF (2000) New advances in coenzyme Q biosynthesis. Protoplasma 213: 134–147

    Article  CAS  Google Scholar 

  • Constantinescu A, Maguire JJ, Packer L (1994) Interactions between ubiquinones and vitamins in membranes and cells. Mol Aspects Med 15: S57-S65

    Article  PubMed  CAS  Google Scholar 

  • Crane FL, Morré DJ (1977) Evidence for coenzyme Q function in Golgi membrane. In: Folkers K, Yamamura Y (eds) Biomedical and clinical aspects of coenzyme Q. Elsevier, Amsterdam, pp 3–14

    Google Scholar 

  • — —, Löw H (eds) (1988) Plasma membrane oxidoreductases in control of animal and plant growth. Plenum, New York

    Google Scholar 

  • — — — (eds) (1990) Oxidoreduction at the plasma membrane: relation to growth and transport, vol I. CRC Press, Boca Raton

    Google Scholar 

  • —, Sun IL, Sun EE (1993) The essential functions of coenzyme Q. Clin Invest 71: S55-S59

    Article  CAS  Google Scholar 

  • — —, Clark MG, Grebing C, Löw H (1985) Transplasma membrane redox systems in growth and development. Biochim Biophys Acta 811: 233–264

    PubMed  CAS  Google Scholar 

  • — —, Sun E, Morré DJ (1991) Alternative functions for coenzyme Q in endomembranes. In: Folkers K, Littarru GP, Yamagami T (eds) Biomedical and clinical aspects of coenzyme Q. Elsevier, Amsterdam, pp 59–70

    Google Scholar 

  • — —, Crowe RA, Alcaín FJ, Löw H (1995) Coenzyme Q10, plasma membrane oxidase and growth control. Mol Aspects Med 2: 1–11

    Google Scholar 

  • Crowe RA, Taparowsky EJ, Crane FL (1993) Ha-ras stimulates the transmembrane oxidoreductase activity of C3H 10T1/2 cells. Biochem Biophys Res Commun 196: 844–850

    Article  PubMed  CAS  Google Scholar 

  • De Laurenzi V, Melino G, Savini Y, Annicchiarico-Petruzelli M, Finazzi-Agrò A, Avigliano L (1995) Cell death by oxidative stress and ascorbic acid regeneration in human neuroectodermal cell lines. Eur J Cancer 4: 463–466

    Article  Google Scholar 

  • Do TQ, Schultz JR, Clarke CF (1996) Enhanced sensitivity of ubiquinone-deficient mutants ofSaccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proc Natl Acad Sci USA 93: 7534–7539

    Article  PubMed  CAS  Google Scholar 

  • Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA (1993) Association of SOS Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363: 45–51

    Article  PubMed  CAS  Google Scholar 

  • Ellis RE, Yuang J, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663–698

    Article  PubMed  CAS  Google Scholar 

  • Ernster L, Beyer RE (1991) Antioxidant functions of coenzyme Q: some biochemical and pathophysiological implications: In: Folkers K, Littarru GP, Yamagami T (eds) Biomedical and clinical aspects of coenzyme Q. Elsevier, Amsterdam, pp 45–58

    Google Scholar 

  • —, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271: 195–204

    PubMed  Google Scholar 

  • Finco TS, Baldwin AS Jr (1995) Mechanistic aspects of NF-kappa B regulation: the emerging role of phosphorylation and proteolysis. Immunity 3: 263–272

    Article  PubMed  CAS  Google Scholar 

  • Frei B (1994) Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med 97: 5–13

    Article  Google Scholar 

  • Gómez-Díaz C, Rodríguez-Aguilera JC, Barroso MP, Villalba JM, Navarro F, Crane FL, Navas P (1997a) Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. J Bioenerg Biomembr 29: 251–257

    Article  PubMed  Google Scholar 

  • —, Villalba JM, Pérez-Vicente R, Crane FL, Navas P (1997b) Ascorbate stabilization is stimulated in HL-60 cells by CoQ10 increase at the plasma membrane. Biochem Biophys Res Commun 234: 79–81

    Article  PubMed  Google Scholar 

  • Greenlund LJS, Beckwerth TL, Johnson EMJ (1995) Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14: 303–314

    Article  PubMed  CAS  Google Scholar 

  • Grilli M, Chiu JJS, Lenardo M (1993) NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol 143: 1–62

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274: 1855–1859

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki Y, Cheng L, Mudge AW, Raff MC (1995) Programmed cell death by default in embryonic cells, fibroblasts and cancer cells. Mol Biol Cell 6: 1443–1458

    PubMed  CAS  Google Scholar 

  • Jacobson MD, Burne JF, King MP, Miyashita T, Reed JC, Raff MC (1993) Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 361: 365–369

    Article  PubMed  CAS  Google Scholar 

  • Jayadev S, Lin B, Bielawska AE, Lee JY, Nazaire F, Pushkareva MY, Obeid LM, Hannun YA (1995) Role for ceramide in cell cycle arrest. J Biol Chem 270: 2047–2052

    Article  PubMed  CAS  Google Scholar 

  • Kagan VE, Nohl H, Quinn PJ (1996) Coenzyme Q: its role in scavenging and generation of radicals in membranes. In: Cadenas E, Packer L (eds) Handbook of antioxidants. Marcel Dekker, New York, pp 157–201

    Google Scholar 

  • Kalin A, Norling B, Applkvist EL, Daliner G (1987) Ubiquinone synthesis in the microsomal fraction of rat liver. Biochim Biophys Acta 926: 70–78

    Google Scholar 

  • Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619–642

    Article  PubMed  CAS  Google Scholar 

  • Larm JA, Vaillant F, Linnane AW, Lawen A (1994) Up-regulation of the plasma membrane oxidoreductase as a prerequisite for the viability of human Namalwa ϱ0 cells. J Biol Chem 296: 30097–30100

    Google Scholar 

  • Macho A, Blázquez M-V, Navas P, Muñoz E (1998) Induction of apoptosis by vallinoid compounds is independent of Jun kinase and AP-1. Cell Growth Differ 9: 277–286

    PubMed  CAS  Google Scholar 

  • Martinus RD, Linnane AW, Nagley P (1993) Growth of rho0 human Namalwa cells lacking oxidative phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme Q10 putatively acting through the plasma membrane oxidase. Biochem Mol Biol Int 31: 997–1005

    PubMed  CAS  Google Scholar 

  • Mitchell P (1990) The classical mobile carrier function of lipophilic quinones in the osmochemistry of electron driver proton translocation. In: Lenaz G, Barnabei D, Rabbi A, Battino M (eds) Highlights in ubiquinone research. Taylor and Francis, London, pp 77–82

    Google Scholar 

  • Muñoz E, Blázquez MV, Ortiz C, Gómez-Díaz C, Navas P (1997) Role of ascorbate in the activation of NF-κB by tumor necrosis factor α in T-cells. Biochem J 325: 23–28

    PubMed  Google Scholar 

  • Navarro F, Villalba JM, Crane FL, Mackellar WC, Navas P (1995) A phospholipid-dependent NADH-coenzyme Q reductase from liver plasma membrane. Biochem Biophys Res Commun 212: 138–143

    Article  PubMed  CAS  Google Scholar 

  • Raff MC (1992) Social controls on cell survival and cell death. Nature 356: 397–400

    Article  PubMed  CAS  Google Scholar 

  • Santos-Ocaña C, Córdoba F, Crane FL, Clarke CF, Navas P (1998) Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane ofSaccharomyces cerevisiae. J Biol Chem 273: 8099–8105

    Article  PubMed  Google Scholar 

  • Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14: 133–151

    Article  PubMed  CAS  Google Scholar 

  • Slater AFG, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S (1996) Intracellular redox changes during apoptosis. Cell Death Differ 3: 57–62

    PubMed  CAS  Google Scholar 

  • Spiegel S, Foster D, Kolesnick R (1996) Signal transduction through lipid second messengers. Curr Opin Cell Biol 8: 159–167

    Article  PubMed  CAS  Google Scholar 

  • Stocker R, Bowry VW, Frei B (1991) Ubiquinone 10 protects human low density lipoprotein more effectively against lipid peroxidation than tocopherol. Proc Natl Acad Sci USA 88: 1646–1650

    Article  PubMed  CAS  Google Scholar 

  • Sun IL, Sun EE, Crane FL, Morré DJ, Lindgren A, Löw H (1992) Requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci USA 89: 11126–11130

    Article  PubMed  CAS  Google Scholar 

  • — — (1995) Comparison of growth stimulation of HeLa cells, HL-60 cells and mouse fibroblats by coenzyme Q. Protoplasma 184: 214–219

    Article  CAS  Google Scholar 

  • Tilly JL, Tilly KI (1995) Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology 136: 242–252

    Article  PubMed  CAS  Google Scholar 

  • Vaillant F, Larm JA, McMullen GL, Wolvetang EJ, Lawen A (1996) Effectors of the mammalian plasma membrane NADH-oxidoreductase system: short-chain ubiquinone analogues as potent stimulators. J Bioenerg Biomembr 28: 531–540

    Article  PubMed  CAS  Google Scholar 

  • Villalba JM, Navarro E, Córdoba F, Serrano A, Arroyo A, Crane FL, Navas P (1995) Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport. Proc Natl Acad Sci USA 92: 4887–4891

    Article  PubMed  CAS  Google Scholar 

  • —, Córdoba F, Navas P (1996a) Ascorbate and the plasma membrane: a new view of cell growth control. In: Harris JR (ed) Subcellular biochemistry, vol 25, ascorbic acid: biochemistry and biomedical cell biology. Plenum, New York, pp 57–81

    Google Scholar 

  • —, Gómez-Díaz C, Navarro F, Navas P (1996b) Role of transplasma membrane redox system in cell protection against oxidative stress. Trends Comp Biochem Physiol 2: 65–72

    CAS  Google Scholar 

  • Wolvetang EJ, Larm JA, Montsoulas P, Lawen A (1996) Apoptosis induced by inhibitors of the plasma membrane NADH-oxidase involves Bcl-2 and calcineurin. Cell Growth Differ 7: 1315–1325

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Díaz, C., Barroso, M.P. & Navas, P. Plasma membrane coenzyme Q10 and growth control. Protoplasma 214, 19–23 (2000). https://doi.org/10.1007/BF02524258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524258

Keywords

Navigation