Skip to main content
Log in

New advances in coenzyme Q biosynthesis

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Coenzyme Q (or ubiquinone) is the product of two distinct biosynthetic pathways: the lipid “tail” of coenzyme Q is formed via the isoprene biosynthetic pathway, and the quinone ring derives from the metabolism of either shikimic acid or tyrosine. In general, eukaryotic organisms use the classical mevalonate pathway to form isopentenyl- and dimethylallyl-diphosphate, the five carbon building blocks of the polyisoprenoid tail, and prokaryotes use 1-deoxy-D-xylulose-5-phosphate, formed via the Rohmer pathway. The quinone ring precursor is 4-hydroxybenzoic acid, which is formed directly from chorismate inSaccharomyces cerevisiae andEscherichia coli, or from tyrosine in animal cells. Ring modification steps including prenylation, decarboxylation, and successive hydroxylation and methylation steps form the fully substituted benzoquinone ring of coenzyme Q. Many of the genes and polypeptides involved in coenzyme Q biosynthesis have been isolated and characterized by utilizing strains ofE. coli andS. cerevisiae with mutations in theubi andCOQ genes, respectively. This article reviews recent progress in characterizing the biosynthesis of coenzyme Q inE. coli, S. cerevisiae, and other eukaryotic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam SS, Nambudiri AMD, Rudney H (1975) 4-Hydroxybenzoate:polyprenyl transferase and the prenylation of 4-aminobenzoate in mammalian tissues. Arch Biochem Biophys 171: 183–190

    Google Scholar 

  • Ashby MN, Edwards PA (1990) Elucidation of the deficiency in two yeast coenzyme Q mutants: characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J Biol Chem 265: 13157–13164

    Google Scholar 

  • —, Kutsunai SY, Ackerman S, Tzagoloff A, Edwards PA (1992)COQ2 is a candidate for the structural gene encodingpara- hydroxybenzoate:polyprenyltransferase. J Biol Chem 267: 4128–4136

    Google Scholar 

  • Avelange-Macherel M-H, Joyard J (1998) Cloning and functional expression ofAtCOQ3, theArabidopsis homologue of the yeastCOQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis. Plant J 14: 203–212

    Google Scholar 

  • Barkovich RJ, Shtanko A, Shepherd JA, Lee PT, Myles DC, Tzagoloff A, Clarke CF (1997) Characterization of theCOQ5 gene fromSaccharomyces cerevisiae: evidence for a C-methyltransferase in ubiquinone biosynthesis. J Biol Chem 272: 9182–9188

    Google Scholar 

  • Begley TP, Kinsland C, Taylor S, Tandon M, Nicewonger R, Wu M, Chiu H-J, Kelleher N, Campobasso N, Zhang Y (1998) Cofactor biosynthesis: a mechanistic perspective. Topics Curr Chem 195: 93–142

    Google Scholar 

  • Boitier E, Degoul F, Desguerre I, Charpentier C, Francois D, Ponsot G, Diry M, Rustin P, Marsac C (1998) A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency. J Neurol Sci 156: 41–46

    Google Scholar 

  • Chan A, Reichmann H, Kogel A, Beck A, Gold R (1998) Metabolic changes in patients with mitochondrial myopathies and effects of coenzyme Q10 therapy. J Neurol 245: 681–685

    Google Scholar 

  • Clarke CF, Williams W, Teruya JH (1991) Ubiquinone biosynthesis inSaccharomyces cerevisiae: isolation and sequence ofCOQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate (DHHB) methyltransferase gene. J Biol Chem 266: 16636–16644

    Google Scholar 

  • Clausen M, Lamb CJ, Megnet R, Doerner PW (1994)PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid inSaccharomyces cerevisiae. Gene 142: 107–112

    Google Scholar 

  • Cox GB, Downie JA (1979) Isolation and characterization of mutants ofEscherichia coli K-12 affected in oxidative phophorylation or quinone biosynthesis. Methods Enzymol 56: 106–117

    Google Scholar 

  • —, Young IG, McCann LM, Gibson F (1969) Biosynthesis of ubiquinone inEscherichia coli K-12: location of genes affecting the metabolism of 3-octaprenyl-4-hydroxybenzoic acid and 2-octaprenylphenol. J Bacteriol 99: 450–458

    Google Scholar 

  • Daniels DL, Plunkett G, Burland V, Blattner FR (1992) Analysis of theEscherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science 257: 771–778

    Google Scholar 

  • Dibrov E, Robinson KM, Lemire BD (1997) TheCOQ5 gene encodes a yeast mitochondrial protein necessary for ubiquinone biosynthesis and the assembly of the respiratory chain. J Biol Chem 272: 9175–9181

    Google Scholar 

  • Do TQ, Schultz JR, Clarke CF (1996) Enhanced sensitivity of ubiquinone deficient mutants ofSaccharomyces cerevisiae to products of autooxidized polyunsaturated fatty acids. Proc Natl Acad Sci USA 93: 7534–7539

    Google Scholar 

  • Eggink G, Engel H, Vriend G, Terpstra P, Witholt B (1990) Rubredoxin reductase ofPseudomonas oleovorans: structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol 212: 135–142

    Google Scholar 

  • Eppink MHM, Schreuder HA, Van Berkel WJH (1997) Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Sci 6: 2454–2458

    Google Scholar 

  • Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S (1997) Structural and functional conservation of theCaenorhabditis elegans timing geneclk-1. Science 275: 980–983

    Google Scholar 

  • Friis P, Daves GD, Folkers K (1966) Complete sequence of biosynthesis fromp-hydroxybenzoic acid to ubiquinone. J Am Chem Soc 88: 4754–4756

    Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62: 334–361

    Google Scholar 

  • Gibson F (1973) Chemical and genetic studies on the biosynthesis of ubiquinone byEscherichia coli. Biochem Soc Trans 1: 317–326

    Google Scholar 

  • —, Young IG (1978) Isolation and characterization of intermediates in ubiquinone biosynthesis. Methods Enzymol 53: 600–609

    Google Scholar 

  • Gibson MI, Gibson F (1964) Preliminary studies on the isolation and metabolism of an intermediate in aromatic biosynthesis: chorismic acid. Biochem J 90: 248–256

    Google Scholar 

  • Glerum DM, Muroff I, Jin C, Tzagoloff A (1997)COX15 codes for a mitochondrial protein essential for the assembly of yeast cytochrome oxidase. J Biol Chem 272: 19088–19094

    Google Scholar 

  • Goewert RR (1980) Studies on the biosynthesis of ubiquinone. PhD dissertation, Saint Louis University, Saint Louis, Mo

    Google Scholar 

  • —, Sippel CJ, Olson RE (1981a) Identification of 3,4-dihydroxy-5-hexaprenylbenzoic acid as an intermediate in the biosynthesis of ubiquinone-6 bySaccharomyces cerevisiae. Biochemistry 20: 4217–4223

    Google Scholar 

  • — —, Grimm MF, Olson RE (1981b) Identification of 3-methoxy-4-hydroxy-5-hexaprenylbenzoic acid as a new intermediate in ubiquinone biosynthesis bySaccharomyces cerevisiae. Biochemistry 20: 5611–5616

    Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343: 425–430

    Google Scholar 

  • Hamilton JA, Cox GB (1971) Ubiquinone biosynthesis inEscherichia coli K-12: accumulation of an octaprenol, farnesylfarnesylgeraniol, by a multiple aromatic auxotroph. Biochem J 123: 435–443

    Google Scholar 

  • Howlett BJ, Bar-Tana J (1980) Polyprenylp-hydroxybenzoate carboxylyase in flagellation ofSalmonella typhimurium. J Bacteriol 143: 644–651

    Google Scholar 

  • Hsu A, Poon WW, Shepherd JA, Myles DC, Clarke CF (1996) Complementation ofcoq3 mutant yeast by mitochondrial targeting of theE. coli UbiG polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis. Biochemistry 35: 9797–9806

    Google Scholar 

  • —, Do TQ, Lee PT, Clarke CF (2000) Genetic evidence for a multisubunit complex in the O-methyl-transferase steps of coenzyme Q biosynthesis. Biochim Biophys Acta 1484: 287–297

    Google Scholar 

  • Jonassen T, Clarke CF (2000) Isolation and functional expression of humanCOQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis. J Biol Chem 275: 12381–12387

    Google Scholar 

  • —, Marbois BN, Kirn L, Chin A, Xia Y-R, Lusis AJ, Clarke CF (1996) Isolation and sequencing of the ratCOQ7 gene and the mapping of mouseCOQ7 to chromosome 7. Arch Biochem Biophys 330: 285–289

    Google Scholar 

  • —, Proft M, Randez-Gil F, Schultz JR, Marbois BN, Entian K-D, Clarke CF (1998) Yeast Clk-1 homologue (Coq/Cat5): a mitochondrial protein in ubiquinone synthesis. J Biol Chem 273: 3351–3357

    Google Scholar 

  • Kagan RM, Clarke S (1994) Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310: 417–427

    Google Scholar 

  • Kalen A, Norling B, Appelkvist EL, Dallner G (1987) Ubiquinone biosynthesis by the microsomal fraction from rat liver. Biochim Biophys Acta 926: 70–78

    Google Scholar 

  • —, Appelkvist E-L, Chojnacki T, Dallner G (1990) Nonaprenyl-4-hydroxybenzoate transferase, an enzyme ivolved in ubiquinone biosynthesis, in the endoplasmic reticulum-Golgi system of rat liver. J Biol Chem 265: 1158–1164

    Google Scholar 

  • Kobayashi T, Kishigami S, Sone M, Inokuchi H, Mogi T, Ito K (1997) Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growingEscherichia coli cells. Proc Natl Acad Sci USA 94: 11857–11862

    Google Scholar 

  • Lawrence J, Cox GB, Gibson F (1974) Biosynthesis of ubiquinone inEscherichia coli K-12: biochemical and genetic characterization of a mutant unable to convert chorismate into 4-hydroxybenzoate. J Bacteriol 118: 41–45

    Google Scholar 

  • Lee PT, Hsu AY, Ha HT, Clarke CF (1997) A C-methyltransferase involved in ubiquinone biosynthesis: isolation and identification of theEscherichia coli ubiE gene. J Bacteriol 179: 1748–1754

    Google Scholar 

  • Leppik RA, Stroobant P, Shineberg B, Young IG, Gibson F (1976a) Membrane associated reactions in ubiquinone biosynthesis: 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone methyltransferase. Biochim Biophys Acta 428: 146–156

    Google Scholar 

  • —, Young IG, Gibson F (1976b) Membrane-associated reactions in ubiquinone biosynthesis inEscherichia coli: 3-octaprenyl-4-hydroxybenzoate carboxy-lyase. Biochim Biophys Acta 436: 800–810

    Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400: 271–274

    Google Scholar 

  • Loscher R, Heide L (1994) Biosynthesis ofp-hydroxybenzoate fromp-coumarate andp-coumaroyl-coenzyme A in cell-free extracts ofLithospermum erythrorhizon cell cultures. Plant Physiol 106: 271–279

    Google Scholar 

  • Macinga DR, Cook GM, Poole RK, Rather PN (1998) Identification and characterization ofaarF, a locus required for production of ubiquinone inProvidencia stuartii andEscherichia coli and for expression of 2′-N-acetyltransferase inP. stuartii. J Bacteriol 180: 128–135

    Google Scholar 

  • Marbois BN, Clarke CF (1996) TheCOQ7 gene encodes a protein inSaccharomyces cerevisiae necessary for ubiquinone biosynthesis. J Biol Chem 271: 2995–3004

    Google Scholar 

  • —, Hsu A, Pillai R, Colicelli J, Clarke CF (1994a) Cloning of a rat cDNA encoding dihydroxypolyprenylbenzoate methyltransferase by functional complementation of aSaccharomyces cerevisiae mutant deficient in ubiquinone biosynthesis. Gene 138: 213–217

    Google Scholar 

  • —, Xia Y-R, Lusis AJ, Clarke CF (1994b) Ubiquinone biosynthesis in eukaryotic cells: tissue distribution of mRNA encoding 3,4-dihydroxy-5-polyprenylbenzoate methyltransferase in the rat and mapping of theCOQ3 gene to mouse chromosome 4. Arch Biochem Biophys 313: 83–88

    Google Scholar 

  • Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci USA 95: 8892–8897

    Google Scholar 

  • Meganathan R (1996) Biosynthesis of the isoprenoid quinones menaquinone (vitamin K2) and ubiquinone (coenzyme Q). In: Neidhardt FC (ed)Escherichia coli andSalmonella: cellular and molecular biology, vol 1. American Society for Microbiology Press, Washington, DC, pp 642–656

    Google Scholar 

  • Melzer M, Heide L (1994) Characterization of polyprenyldiphosphate:4-hydroxybenzoate polyprenyltransferase fromEscherichia coli. Biochim Biophys Acta 1212: 93–102

    Google Scholar 

  • Momose K, Rudney H (1972) 3-Polyprenyl-4-hydroxybenzoate synthesis in the inner membrane of mitochondria fromp-hydroxybenzoate and isopentenylpyrophosphate. J Biol Chem 247: 3930–3940

    Google Scholar 

  • Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress inCaenorhabditis elegans. Genetics 143: 1207–1218

    Google Scholar 

  • Nakahigashi K, Miyamoto K, Nishimura K, Inokuchi H (1992) Isolation and characterization of a light-sensitive mutant ofEscherichia coli K-12 with a mutation in a gene that is required for the biosynthesis of ubiquinone. J Bacteriol 174: 7352–7359

    Google Scholar 

  • Nambudiri AMD, Brockman D, Alam SS, Rudney H (1977) Alternate routes for ubiquinone bisoynthesis. Biochem Biophys Res Commun 76: 282–288

    Google Scholar 

  • Nichols BP, Green JM (1992) Cloning and sequencing ofEscherichia coli ubiC and purification of chorismate lyase. J Bacteriol 174: 5309–5316

    Google Scholar 

  • Nishimura K, Nakahigashi K, Inokuchi H (1992) Location of theubiA gene on the physical map ofEscherichia coli. J Bacteriol 174: 5762

    Google Scholar 

  • Ogasahara S, Engel AG, Frens D, Mack D (1989) Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci USA 86: 2379–2382

    Google Scholar 

  • Ogura K, Koyama T (1998) Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98: 1263–1276

    Google Scholar 

  • Okada K, Suzuki K, Kamiya Y, Zhu X, Fujisaki S, Nishimura Y, Nishino T, Nakagawa T, Kawamukai M, Matsuda H (1996) Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone. Biochim Biophys Acta 1302: 217–223

    Google Scholar 

  • —, Kamiya Y, Zhu X, Suzuki K, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1997a) Cloning of thesdsA gene encoding solanesyl diphosphate synthase fromRhodobacter capsulatus and its functional expression inEscherichia coli andSaccharomyces cerevisiae. J Bacteriol 179: 5992–5998

    Google Scholar 

  • —, Minehira M, Zhu X, Suzuki K, Nakagawa T, Matsuda H, Kawamukai M (1997b) Theisp B gene encoding octaprenyl diphosphate synthase is essential for growth ofEscherichia coli. J Bacteriol 179: 3058–3060

    Google Scholar 

  • —, Kainou T, Matsuda H, Kawamukai M (1998a) Biological significance of the side chain length of ubiquinone inSaccharomyces cerevisiae. FEBS Lett 431: 241–244

    Google Scholar 

  • — —, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1998b) Molecular cloning and mutational analysis of theddsA gene encoding decaprenyl diphosphate synthase fromGluconobacter suboxydans. Eur J Biochem 255: 52–59

    Google Scholar 

  • Olson RE (1966) Biosynthesis of ubiquinones in animals. Vitamin Horm 24: 551–573

    Google Scholar 

  • —, Rudney H (1983) Biosynthesis of ubiquinone. Vitamin Horm 40: 1–43

    Google Scholar 

  • Palfey BA, Ballou DP, Massey V (1995) Oxygen activation by flavins and pterins. In: Valentine JS, Foote CS, Greenberg A, Liebman JF (eds) Active oxygen in biochemistry. Blackie Academic and Professional Press, Glasgow, pp 37–83

    Google Scholar 

  • Parmryd I, Dallner G (1996) Organization of isoprenoid biosynthesis. Biochem Soc Trans 24: 677–682

    Google Scholar 

  • Pennock JF, Threlfall DR (1983) Biosynthesis of ubiquinone and related compounds. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds. Wiley, New York, pp 191–302

    Google Scholar 

  • Poon WW, Marbois BN, Faull K, Clarke CF (1995) 3-Hexaprenyl-4-hydroxybenzoic acid forms a predominant intermediate pool in ubiquinone biosynthesis inSaccharomyces cerevisiae. Arch Biochem Biophys 320: 305–314

    Google Scholar 

  • —, Do TQ, Marbois BN, Clarke CF (1997) Sensitivity to treatment with polyunsaturated fatty acids is a general characteristic of the ubiquinone-deficient yeastcoq mutants. Mol Aspects Med 18: S121-S127

    Google Scholar 

  • —, Barkovich RJ, Hsu AY, Frankel A, Lee PT, Shepherd JN, Myles DC, Clarke CF (1999) Yeast and Rat Coq3 andE. coli UbiG catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. J Biol Chem 274: 21665–21672

    Google Scholar 

  • - Davis DE, Ha HT, Jonassen T, Rather PN, Clarke CF (2000) Identification ofE. coli ubiB: a gene required for the first monooxygenase step in ubiquinone biosynthesis. J Bacteriol (in press)

  • Proft M, Kotter P, Hedges D, Bojunga N, Entian KD (1995)CAT5, a new gene necessary for derepression of gluconeogenic enzymes inSaccharomyces cerevisiae. EMBO J 14: 6116–6126

    Google Scholar 

  • Ranganathan S, Ramasarma T (1974) The metabolism of phenolic acids in the rat. Biochem J 140: 517–522

    Google Scholar 

  • Rohmer RH, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118: 2564–2566

    Google Scholar 

  • Rowland MA, Nagley P, Linnane AW, Rosenfeldt FL (1998) Coenzyme Q10 treatment improves the tolerance of the senescent myocardium to pacing stress in the rat. Cardiovasc Res 40: 165–173

    Google Scholar 

  • Santos-Ocana C, Cordoba F, Crane FL, Clarke CF, Navas P (1998a) Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane ofSaccharomyces cerevisiae. J Biol Chem 273: 8099–8105

    Google Scholar 

  • —, Villalba JM, Cordoba F, Padilla S, Crane FL, Clarke CF, Navas P (1998b) Genetic evidence for coenzyme Q requirement in plasma membrane electron transport. J Bioenerg Biomembr 30: 465–474

    Google Scholar 

  • Schnitzler J-P, Madlung J, Rose A, Scitz HU (1992) Biosynthesis ofp-hydroxybenzoic acid in elicitor-treated carrot cell cultures. Plant 188: 594–600

    Google Scholar 

  • Schultz JR, Clarke CF (199a) Functional roles of ubiquinone. In: Cadenas E, Packer L (eds) Mitochondria, oxidants, and aging. Marcel Dekker, New York, pp 95–118

  • — — (1999b) Characterization ofSaccharomyces cerevisiae ubiquinone-deficient mutants. BioFactors 9: 121–129

    Google Scholar 

  • Shepherd JA, Poon WW, Myles DC, Clarke CF (1996) The biosynthesis of ubiquinone: synthesis and enzymatic modification of biosynthetic precursors. Tetrahedron Lett 37: 2395–2398

    Google Scholar 

  • Siebert M, Bechthold A, Melzer M, May U, Berger U, Schroder G, Schroder J, Severin K, Heide L (1992) Ubiquinone biosynthesis: cloning of the genes coding for chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyl transferase fromEscherichia coli. FEBS Lett 307: 347–350

    Google Scholar 

  • —, Severin K, Heide L (1994) Formation of 4-hydroxybenzoate inEscherichia coli: characterization of theubiC gene and its encoded enzyme chorismate pyruvate-lyase. Microbiol 140: 897–904

    Google Scholar 

  • Sirlin JL (1956)Vacillans, a neurological mutant in the house mouse linked withbrown. J Genet 54: 42–48

    Google Scholar 

  • Soja AM, Mortensen SA (1997) Treatment of congestive heart failure with coenzyme Q10 illuminated by meta-analyses of clinical trials. Mol Aspects Med 18: S159-S168

    Google Scholar 

  • Stroobant P, Young IG, Gibson F (1972) Mutants inEscherichia coli K-12 blocked in the final reaction of ubiquinone biosynthesis: characterization and genetic analysis. J Bacteriol 109: 134–139

    Google Scholar 

  • Suzuki K, Ueda M, Yuasa M, Nakagawa T, Kawamukai M, Matsuda H (1994) Evidence thatEscherichia coli ubiA product is a functional homolog of yeastCOQ2, and the regulation ofubiA gene expression. Biosci Biotech Biochem 58: 1814–1819

    Google Scholar 

  • —, Okada K, Kamiya Y, Zhu XF, Nakagawa T, Kawamukai M, Matsuda H (1997) Analysis of the decaprenyl diphosphate synthase (dps) gene in fission yeast suggests a role of ubiquinone as an antioxidant. J Biochem 121: 496–505

    Google Scholar 

  • Teclebrhan H, Jakobsson-Borin A, Brunk U, Dallner G (1995) Relationship between the endoplasmic reticulum-Golgi membrane system and ubiquinone biosynthesis. Biochim Biophys Acta 1256: 157–165

    Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990)PET genes ofSaccharomyces cerevisiae. Microbiol Rev 54: 211–225

    Google Scholar 

  • —, Akai A, Needleman RB (1975a) Assembly of the mitochondrial membrane system: isolation of nuclear and cytoplasmic mutants ofSaccharomyces cerevisiae with specific defects in mitochondrial functions. J Bacteriol 122: 826–831

    Google Scholar 

  • —, Akai A, Needleman RB (1975b) Assembly of the mitochondrial membrane system: characterization of nuclear mutants ofSaccharomyces cerevisiae with defects in mitochondrial ATPase and respiratory enzymes. J Biol Chem 250: 8228–8235

    Google Scholar 

  • —, Yue J, Jang J, Paul M-F (1994) A new member of a family of ATPases is essential for assembly of mitochondrial respiratory chain and ATP synthetase complexes inSaccharomyces cerevisiae. J Biol Chem 269: 26144–26151

    Google Scholar 

  • Vajo Z, King LM, Jonassen T, Wilkin DJ, Ho N, Munnich A, Clarke CF, Francomano CA (1999) Conservation of theC. elegans timing geneclk-1 from yeast to human: a gene required for ubiquinone biosynthesis with potential implications for aging. Mammalian Genome 10: 1000–1004

    Google Scholar 

  • Vidgren J, Svensson LA, Liijas A (1994) Crystal structure of catechol O-methyltransferase. Nature 368: 354–358

    Google Scholar 

  • Walker GA, Walker DW, Lithgow GJ (1998) A relationship between thermotolerance and longevity inCaenorhabditis elegans. J Invest Dermatol Symp Proc 3: 6–10

    Google Scholar 

  • Wallace BJ, Young IG (1977) Role of quinones in electron transport to oxygen and nitrate inEscherichia coli: studies with aubiA menA double quinone mutant. Biochim Biophys Acta 461: 84–100

    Google Scholar 

  • White RH (1996) Biosynthesis of isoprenoids in bacteria. In: Neidhardt FC (ed)Escherichia coli andSalmonella: cellular and molecular biology, vol 1. American Society for Microbiology Press, Washington, DC, pp 637–641

    Google Scholar 

  • Wierenga RK, Terpstra P, Hol WGJ (1986) Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187: 101–107

    Google Scholar 

  • Wissenbach U, Ternes D, Unden G (1992) AnEscherichia coli mutant containing only demethylmenaquinone but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch Microbiol 158: 68–73

    Google Scholar 

  • Wong A, Boutis P, Hekimi S (1995) Mutations in theclk-1 gene ofCaenorhabditis elegans affect developmental and behavioral timing. Genetics 139: 1247–1259

    Google Scholar 

  • Wu G, Williams HD, Zamanian M, Gibson F, Poole RK (1992) Isolation and characterization ofEscherichia coli mutants affected in aerobic respiration: the cloning and nucleotide sequence ofubiG. J Gen Microbiol 138: 2101–2112

    Google Scholar 

  • — —, Gibson F, Poole RK (1993) Mutants ofEscherichia coli affected in respiration: the cloning and nucleotide sequence ofubiA, encoding the membrane-bound p-hydroxybenzoate:octaprenyl-transferase. J Gen Microbiol 139: 1795–1805

    Google Scholar 

  • Yazaki K, Heide L, Tabata M (1991) Formation ofp-hydroxybenzoic acid fromp-coumaric acid by cell free extract ofLithospermum erythrorhizon cell cultures. Phytochemistry 30: 2233–2236

    Google Scholar 

  • Young IG, McCann IM, Stroobant P, Gibson F (1971) Characterization and genetic analysis of mutant strains ofEscherichia coli K-12 accumulating the ubiquinone precursors 2-octaprenyl-6-methoxy-1,4-benzoquinone and 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone. J Bacteriol 105: 679–778

    Google Scholar 

  • —, Stroobant P, MacDonald CG, Gibson F (1973) Pathway for ubiquinone biosynthesis inEscherichia coli K-12: gene-enzyme relationships and intermediates. J Bacteriol 114: 42–52

    Google Scholar 

  • Zeng H, Snavely I, Zamorano P, Javor GT (1998) Low ubiquinone content inEscherichia coli causes thiol hypersensitivity. J Bacteriol 180: 3681–3685

    Google Scholar 

  • Zhang Y, Aberg F, Appelkvist E-L, Dallner G, Ernster L (1995) Uptake of dietary coenzyme Q supplement is limited in rats. J Nutr 125: 446–453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, C.F. New advances in coenzyme Q biosynthesis. Protoplasma 213, 134–147 (2000). https://doi.org/10.1007/BF01282151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282151

Keywords

Navigation