Skip to main content
Log in

Plant myosins

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Plant myosins are motor proteins that bind to the external surfaces of organelles and interact with the cytoskeletal protein actin (as actin microfilaments), which organizes and directs intracellular movement. Recent progress in physiological, biochemical, immunological, and genetical studies of plant myosin has revealed considerable information about the structures and functions of these important molecules. This article briefly reviews the history of plant myosin research, summarizes recent progress, and highlights directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AF:

actin filament

References

  • Barry WH (1968) Coupling of excitation and cessation of cyclosis in Nitella: role of divalent cations. J Cell Physiol 72: 153–160

    Article  PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Santa-Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on track: the plant Golgi apparatus traffic on an actin/ER network. Plant J 15: 441–447

    Article  PubMed  CAS  Google Scholar 

  • Braun M (1996) Immunolocalization of myosin in rhizoids ofChara globularis Thuill. Protoplasma 191: 1–8

    Article  CAS  Google Scholar 

  • Chen JCW, Kamiya N (1975) Localization of myosin in the internodal cell ofNitella as suggested by differential treatment with N-ethylmaleimide. Cell Struct Fund 1: 1–9

    CAS  Google Scholar 

  • Cheney RE, Riley MA, Mooseker MS (1993a) Phylogenetic analysis of the myosin superfamily. Cell Motil Cytoskeleton 24: 215–223

    Article  PubMed  CAS  Google Scholar 

  • Cheney RE, O’Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS (1993b) Brain myosin V is a two-headed unconventional myosin with motor activity. Cell 75: 13–23

    PubMed  CAS  Google Scholar 

  • Cope MJTV, Whisstock J, Rayment I, Kendrick-Jones J (1996) Conservation within the myosin motor domain: implications for structure and function. Structure 4: 969–987

    Article  PubMed  CAS  Google Scholar 

  • Forde J, Steer MW (1976) Cytoplasmic streaming inElodea. Can J Bot 54: 2688–2694

    Google Scholar 

  • Goosen-de Roo L, Burggraff PD, Libbenga KR (1983) Microfilament bundles associated with tubular endoplasmic reticulum in fusiform cells in the active cambial zone ofFraxinus excelsior L. Protoplasma 116: 204–208

    Article  Google Scholar 

  • Grolig F, Williamson RE, Parke J, Miller C, Anderton BH (1988) Myosin and Ca2+-sensitive streaming in the alga Chara: detection of two polypeptides reacting with a monoclonal anti-myosin and their localization in the streaming endoplasm. Eur J Cell Biol 47: 22–31

    PubMed  CAS  Google Scholar 

  • —, Schroder J, Sawitzky H, Lange U (1996) Partial characterization of a putative 110 kDa myosin from the green algaChara corallina by in vitro binding of fluorescent F-actin. Cell Biol Int 20: 365–373

    Article  PubMed  CAS  Google Scholar 

  • Hayama T, Tazawa M (1980) Ca2+ reversibly inhibits active rotation of chloroplasts in isolated cytoplasmic droplets ofChara. Protoplasma 102: 1–9

    Article  CAS  Google Scholar 

  • Hensel W (1985) Cytochalasin B affects the structural polarity of statocytes from cress roots (Lepidium sativum). Protoplasma 129: 178–187

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1989) Myosin associated with the surface of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. J Cell Sci 94: 319–325

    Google Scholar 

  • Higashi-Fujime S, Ishikawa R, Iwasawa H, Kagami O, Kurimoto E, Kohama K, Hozumi T (1995) The fastest actin-based motor protein from the green alga,Chara, and its distinct mode of interaction with actin. FEBS Lett 375: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Igarashi H, Vidali L, Yokota E, Sonobe S, Hepler PK, Shimmen T (1999) Actin filaments purified from tobacco cultured BY-2 cells can be translocated by plant myosin. Plant Cell Physiol 40: 1167–1171

    Google Scholar 

  • Kachar B, Reese TS (1988) The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J Cell Biol 106: 1545–1552

    Article  PubMed  CAS  Google Scholar 

  • Kamitsubo E (1966) Motile protoplasmic fibrils in cells of Characeae II: linear fibrillar structure and its bearing on protoplasmic streaming. Proc Jpn Acad 42: 640–643

    Google Scholar 

  • — (1972) Motile protoplasmic fibrils in cells of the Characeae. Protoplasma 74: 53–70

    Article  Google Scholar 

  • Kamiya N (1981) Physical and chemical basis of cytoplasmic streaming. Annu Rev Plant Physiol 32: 205–236

    Article  CAS  Google Scholar 

  • — (1986) Cytoplasmic streaming in giant algal cells: a historical survey of experimental approaches. Bot Mag Tokyo 99: 441–467

    Article  CAS  Google Scholar 

  • —, Kuroda K (1956) Velocity distribution of the protoplasmic streaming inNitella cells. Bot Mag Tokyo 69: 544–550

    Google Scholar 

  • Kato T, Tonomura Y (1977) Identification of myosin inNitella flexilis. J Biochem 82: 777–782

    PubMed  CAS  Google Scholar 

  • Kersey YM, Wessells NK (1976) Localization of actin filaments in internodal cells of characean algae: a scanning and transmission electron microscope study. J Cell Biol 68: 264–275

    Article  PubMed  CAS  Google Scholar 

  • —, Hepler PK, Palevitz BA, Wessells NK (1976) Polarity of actin filaments in characean algae. Proc Natl Acad Sci USA 73: 165–167

    Article  PubMed  CAS  Google Scholar 

  • Kikuyama M, Tazawa M (1982) Ca2+ ion reversibly inhibits the cytoplasmic streaming ofNitella. Protoplasma 113: 241–243

    Article  CAS  Google Scholar 

  • Kinkema M, Schiefelbein J (1994) A myosin from a higher plant has structural similarities to class V myosins. J Mol Biol 239: 591–597

    Article  PubMed  CAS  Google Scholar 

  • —, Wang H, Schiefelbein J (1994) Molecular analysis of the myosin gene family inArabidopsis thaliana. Plant Mol Biol 26: 1139–1153

    Article  PubMed  CAS  Google Scholar 

  • Knight AE, Kendrick-Jones J (1993) A myosin-like protein from a higher plant. J Mol Biol 231: 148–154

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Shimmen T (1988a) Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+. J Cell Biol 106: 1539–1543

    Article  PubMed  CAS  Google Scholar 

  • — — (1988b) Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes. J Cell Sci 91: 501–509

    Google Scholar 

  • —, Chaen S, Shimmen T (1990) Characterization of the translocator associated with pollen tube organelles. Protoplasma 154: 179–183

    Article  Google Scholar 

  • —, Okagaki T, Kohama K, Shimmen T (1991) Pollen tube extract supports the movement of actin filaments in vitro. Protoplasma 161: 75–77

    Article  Google Scholar 

  • —, Ishikawa T, Nagata T, Kohama K, Shimmen T (1992) Partial purification of myosin from lily pollen tubes by monitoring with in vitro motility assay. Protoplasma 170: 77–85

    Article  CAS  Google Scholar 

  • Kron SJ, Spudich JA (1986) Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA 83: 6272–6276

    Article  PubMed  CAS  Google Scholar 

  • La Claire JW II (1991) Immunolocalization of myosin in intact and wounded cells of the green algaErnodesmis verticillata (Klitzing) Børgesen. Planta 184: 209–217

    Article  Google Scholar 

  • Lichtscheidl IK, Lancelle SA, Hepler PK (1990) Actin-endoplasmic reticulum complexes in Drosera: their structural relationship with the plasmalemma, nucleus, and organelles in cells prepared by high pressure freezing. Protoplasma 155: 116–126

    Article  Google Scholar 

  • Liebe S, Quader H (1994) Myosin in onion (Allium cepa) bulb scale epidermal cells: involvement in dynamics of organelles and endoplasmic reticulum. Physiol Plant 90: 114–124

    Article  CAS  Google Scholar 

  • Lin Q, Grolig F, Jablonsky PP, Williamson RE (1989) Myosin heavy chains: detection by immunoblotting in higher plants and localization by immunofluorescence in the algaChara. Cell Biol Int Rep 13: 107–117

    Article  CAS  Google Scholar 

  • —, Jablonsky PP, Elliot J, Williamson RE (1994) A 170 kDa polypeptide from mung bean shares multiple epitopes with rabbit skeletal myosin and binds ADP-agarose. Cell Biol Int 18: 1035–1047

    Article  Google Scholar 

  • Lorz H, Paszkowski J, Dierks-Ventling C, Potrykus I (1981) Isolation and characterization of cytoplasts and miniprotoplasts derived from protoplasts of cultured cells. Physiol Plant 53: 385–391

    Article  CAS  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162–1164

    Article  PubMed  CAS  Google Scholar 

  • Ma Y-Z, Yen L-F (1989) Actin and myosin in pea tendrils. Plant Physiol 89: 586–589

    Article  PubMed  CAS  Google Scholar 

  • McCurdy DW, Harmon AC (1992a) Calcium-dependent protein kinase in the green algaChara. Planta 188: 54–61

    Article  CAS  Google Scholar 

  • — — (1992b) Phosphorylation of a putative myosin light chain inChara by calcium-dependent protein kinase. Protoplasma 171: 85–88

    Article  CAS  Google Scholar 

  • Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, Callaham DA, Gross DJ, Hepler PK (1992) Free Ca2+ gradient in growing pollen tubes ofLilium. J Cell Sci 101: 7–12

    CAS  Google Scholar 

  • —, Scordillis SP, Hepler PK (1995) Identification and localization of three classes of myosins in pollen tubes ofLilium longiflorum andNicotiana alata. J Cell Sci 108: 2549–2553

    PubMed  CAS  Google Scholar 

  • Moepps B, Conrad S, Schraudolf H (1993) PCR-dependent amplification and sequence characterization of partial cDNAs encoding myosin-like proteins inAnemia phyllitidis (L.) Sw. andArabidopsis thaliana (L.) Heynh. Plant Mol Biol 21: 1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Nagai R, Hayama T (1979) Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming inChara internodal cells. J Cell Sci 36: 121–136

    PubMed  CAS  Google Scholar 

  • —, Rebhun LI (1966) Cytoplasmic microfilaments in streamingNitella cells. J Ultrastruct Res 14: 571–589

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel EA, Webb WW (1982) Hydrodynamic models of viscous coupling between motile myosin and endoplasm in characean algae. J Cell Biol 94: 444–454

    Article  PubMed  CAS  Google Scholar 

  • Ohsuka K, Inoue A (1979) Identification of myosin in a flowering plant,Egeria densa. J Biochem 85: 375–378

    PubMed  CAS  Google Scholar 

  • Palevitz BA, Hepler PK (1975) Identification of actin in situ at the ectoplasm-endoplasm interface of Nitella: microfilament-chloroplast association. J Cell Biol 65: 29–38

    Article  PubMed  CAS  Google Scholar 

  • —, Ash JF, Hepler PK (1974) Actin in the green alga,Nitella. Proc Natl Acad Sci USA 71: 363–366

    Article  PubMed  CAS  Google Scholar 

  • Parke J, Miller C, Anderton BH (1986) Higher plant myosin heavy-chain identified using a monoclonal antibody. Eur J Cell Biol 41: 9–13

    CAS  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6: 1815–1828

    Article  PubMed  CAS  Google Scholar 

  • — — —, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174: 160–173

    Article  PubMed  CAS  Google Scholar 

  • Plazinski J, Elliott J, Hurley UA, Burch J, Arioli T, Williamson RE (1997) Myosins from angiosperms, ferns, and algae: amplification of gene fragments with versatile PCR primers and detection of protein products with a monoclonal antibody to a conserved head epitope. Protoplasma 196: 78–86

    Article  CAS  Google Scholar 

  • Quader H, Hofmann A, Schnepf E (1987) Shape and movement of the endoplasmic reticulum in onion bulb epidermis cells: possible involvement of actin. Eur J Cell Biol 44: 17–26

    Google Scholar 

  • Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Rathore KS, Cork RJ, Robinson KR (1991) A cytoplasmic gradient of Ca2+ is correlatd with the growth of lily pollen tubes. Dev Biol 148: 612–619

    Article  PubMed  CAS  Google Scholar 

  • Reiss H-D, Nobling R (1986) Quin-2 fluorescence in lily pollen tubes: distribution of free cytoplasmic calcium. Protoplasma 131: 244–246

    Article  Google Scholar 

  • Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11: 331–340

    PubMed  CAS  Google Scholar 

  • Sheetz MP, Spudich JA (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T (1978) Dependency of cytoplasmic streaming on intracellular ATP and Mg2+ concentrations. Cell Struct Fund 3: 113–121

    CAS  Google Scholar 

  • — (1988) Cytoplasmic streaming regulated by adenine nucleotides and inorganic phosphates in Characeae. Protoplasma Suppl 1: 3–9

    Google Scholar 

  • — (1992) Inhibitory regulation of cytoplasmic streaming by Ca2+ in plant cells. In: Kohama K (ed) Calcium inhibition. Japan Scientific Societies Press and CRC Press, Tokyo and Boca Raton, pp 69–90

    Google Scholar 

  • —, Tazawa M (1982) Reconstitution of cytoplasmic streaming in Characeae. Protoplasma 113: 127–131

    Article  Google Scholar 

  • — — (1983) Control of cytoplasmic streaming by ATP, Mg2+, and cytochalasin B in permeabilized Characeae cell. Protoplasma 115: 18–24

    Article  CAS  Google Scholar 

  • —, Yano M (1986) Regulation of myosin sliding alongChara actin bundles by native skeletal muscle tropomyosin. Protoplasma 132: 129–136

    Article  CAS  Google Scholar 

  • —, Xu Y-L, Kohno T (1990) Inhibition of cytoplasmic streaming by sulphate in characean cells. Protoplasma 159: 39–44

    Article  Google Scholar 

  • Sibata-Sekiya K, Tonomura Y (1975) Desensitization of substrate inhibition of acto-H-meromyosin ATPase by treatment of H-meromyosin withp-chloromercuribenzoate: relation between extent of desensitization and amount of boundp-chloromercuribenzoate. J Biochem 77: 543–557

    Google Scholar 

  • Sokolov OI, Bogatyrev VA, Turkina MV (1986) Myosin from conducting tissues ofHeracleum sosnowskyi: interaction with muscle actin and formation of filaments. Fiziol Rast 33: 421–431

    CAS  Google Scholar 

  • Sonobe S (1996) Studies on the plant cytoskeleton using miniprotoplasts of tobacco BY-2 cells. J Plant Res 109: 437–448

    Article  Google Scholar 

  • Takagi S, Yokota E, Shimmen T, Nagai R (1995) Motor protein activity for cytoplasmic streaming detected inVallisneria leaves. Plant Cell Physiol 36: S132

    Google Scholar 

  • Tang X, Hepler PK, Scordilis SP (1989) Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide inNicotiana pollen tubes. J Cell Sci 92: 569–574

    PubMed  CAS  Google Scholar 

  • Tazawa M (1964) Studies onNitella having artificial cell sap 1: replacement of the cell sap with artificial solutions. Plant Cell Physiol 5: 33–43

    CAS  Google Scholar 

  • —, Kishimoto U (1968) Cessation of cytoplasmic streaming ofChara internodes during action potential. Plant Cell Physiol 9: 361–368

    Google Scholar 

  • —, Kikuyama M, Shimmen T (1976) Electric characteristics and cytoplasmic streaming of Characeae cells lacking tonoplast. Cell Struct Funct 1: 165–176

    Article  CAS  Google Scholar 

  • Terasaki O, Niitsu T (1994) Differential roles of microtubule and actin-myosin cytoskeleton in the growth ofPinus pollen tubes. Sex Plant Reprod 7: 264–272

    Google Scholar 

  • Tischendorf G, Sawitzky D, Werz G (1987) Antibodies specific for vertebrate actin, myosin, actinin, or vincuylin recognize epitopes in the giant nucleus of the marine green algaAcetabularia. Cell Motil Cytoskeleton 7: 78–86

    Article  CAS  Google Scholar 

  • Tominaga Y, Shimmen T, Tazawa M (1983) Control of cytoplasmic streaming by extracellular Ca2+ in permeabilizedNitella cells. Protoplasma 116: 75–77

    Article  CAS  Google Scholar 

  • —, Wayne R, Tung HYL, Tazawa M (1987) Phosphorylation-dephosphorylation is involved in Ca2+-controlled cytoplasmic streaming of characean cells. Protoplasma 136: 161–169

    Article  CAS  Google Scholar 

  • Tonomura Y, Yoshimura J (1962) Binding ofp-chloromercuribenzoate to actin. J Biochem 51: 259–266

    PubMed  CAS  Google Scholar 

  • Uyeda TQP (1996) Ultra-fastChara myosin: a test case for the swinging lever arm model for force production by myosin. J Plant Res 109: 231–239

    Article  CAS  Google Scholar 

  • Vahey M, Titus M, Trautwein R, Scordilis S (1982) Tomato actin and myosin: contractile proteins from a higher land plant. Cell Motil 2: 131–147

    Article  CAS  Google Scholar 

  • Williamson RE (1974) Actin in the alga,Chara corallina. Nature 248: 801–802

    Article  PubMed  CAS  Google Scholar 

  • — (1975) Cytoplasmic streaming inChara: a cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci 17: 655–668

    PubMed  CAS  Google Scholar 

  • — (1976) Cytoplasmic streaming in characean algae. In: Wardlaw IF, Passioura JB (eds) Transport and transfer processes in plants. Academic Press, New York, pp 51–58

    Google Scholar 

  • — (1979) Filaments associated with the endoplasmic reticulum in the streaming cytoplasm ofChara corallina. Eur J Cell Biol 20: 177–183

    PubMed  CAS  Google Scholar 

  • — (1993) Organelle movements. Annu Rev Plant Physiol Plant Mol Biol 44: 181–202

    Article  Google Scholar 

  • —, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the algaChara. Nature 296: 647–651

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Nakamura T, Sekine T (1973) Studies on the fast reacting sulfhydryl group of skeletal myosin A: conversion to smooth muscle myosin type with N-ethylmaleimide treatment. Biochim Biophys Acta 328: 154–165

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Kikuyama M, Sutoh-Yamamoto N, Kamitsubo E (1994) Purification of actin based motor protein fromChara corallina. Proc Jpn Acad Ser B 70: 175–180

    CAS  Google Scholar 

  • — — — —, Katayama E (1995) Myosin from alga Chara: unique structure revealed by electron microscopy. J Mol Biol 254: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Shimmen T (1994) Isolation and characterization of plant myosin from pollen tubes of lily. Protoplasma 177: 153–162

    Article  CAS  Google Scholar 

  • Yokota E, McDonald AR, Liu B, Shimmen T, Palevitz BA (1995a) Localization of a 170 kDa myosin heavy chain in plant cells. Protoplasma 185: 178–187

    Article  CAS  Google Scholar 

  • —, Mimura T, Shimmen T (1995b) Biochemical, immunochemical and immunohistochemical identification of myosin heavy chain in cultured cells ofCatharanthus roseus. Plant Cell Physiol 36: 1541–1547

    CAS  Google Scholar 

  • —, Muto S, Shimmen T (1999a) Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol 119: 231–239

    Article  PubMed  CAS  Google Scholar 

  • —, Yukawa C, Muto S, Sonobe S, Shimmen T (1999b) Biochemical and immunocytochemical characterization of two types of myosins in cultured tobacco bright yellow-2 cells. Plant Physiol 121: 525–534

    Article  PubMed  CAS  Google Scholar 

  • Yoneda M, Nagai R (1988) Structural basis of cytoplasmic streaming in characean internodal cells: hydrodynamic analysis. Protoplasma 147: 64–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of the late Professor Noburo Kamiya (1913–1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimmen, T., Ridge, R.W., Lambiris, I. et al. Plant myosins. Protoplasma 214, 1–10 (2000). https://doi.org/10.1007/BF02524256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524256

Keywords

Navigation