Skip to main content
Log in

The ecology of mercury-resistant bacteria in Chesapeake Bay

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Total ambient mercury concentrations and numbers of mercury resistant, aerobic heterotrophic bacteria at six locations in Chesapeake Bay were monitored over a 17 month period. Mercury resistance expressed as the proportion of the total, viable, aerobic, heterotrophic bacterial population reached a reproducible maximum in spring and was positively correlated with dissolved oxygen concentration and sediment mercury concentration and negatively correlated with water turbidity. A relationship between mercury resistance and metabolic capability for reduction of mercuric ion to the metallic state was established by surveying a number of HgCl2-resistant cultures. The reaction was also observed in microrganisms isolated by differential centrifugation of water and sediment samples. Mercuric ion exhibited an average half-life of 12.5 days in the presence of approximately 105 organisms/ml. Cultures resistant to 6 ppm of mercuric chloride and 3 ppm of phenylmercuric acetate (PMA) were classified into eight generic categories.Pseudomonas spp. were the most numerous of those bacteria capable of metabolizing both compounds; however, PMA was more toxic and was more selective forPseudomonas. The mercury-resistant generic distribution was distinct from that of the total bacterial generic distribution and differed significantly between water and sediment, positionally and seasonally. The proportion of nonglucose-utilizing mercury-resistantPsuedomonas spp. was found to be positively correlated with total bacterial mercury resistance. It is concluded from this study that numbers of mercury-resistant bacteria as established by plate count can serve as a valid index ofin situ Hg2+ metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balkwill, D. L., and Casida, Jr. L. E. 1973. Microflora of soil as viewed by freezeetching.J. Bacteriol. 114: 1319–1327.

    PubMed  CAS  Google Scholar 

  2. Biggs, R. B. 1970. Geology and Hydrography, pp. 7–15. Natural Resources Institute of the University of Maryland, Contribution No. 397. Gross physical and biological effects of overboard spoil disposal in upper Chesapeake Bay.

  3. Bongers, L. H., and Khattak, M. N. 1972. Sand and Gravel Overlay for Control of Mercury in Sediments, pp. 29–35. Final report, Project No. 16080 HVA, Environmental Protection Agency, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  4. Bothner, M. H., and Carpenter, R. 1973. The Rate of Mercury Loss from Contaminated Estuarine Sediments in Bellingham Bay, Washington. Proceedings First Annual National Science Foundation Trace Contaminants Conference, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

  5. Brasfield, H. 1972. Environmental factors correlated with size of bacterial populations in a polluted stream.Appl. Microbiol. 24: 349–352.

    Google Scholar 

  6. Brown, H. G., Hensley, C. P., McKinney, G. L., and Robinson, J. L. 1973. Efficiency of heavy metals removal in municipal sewage treatment plants.Environ. Letters 5: 103–114.

    CAS  Google Scholar 

  7. Colwell, R. R., and Wiebe, W. J. 1970. “Core” characteristics for use in classifying aerobic, heterotrophic bacteria by numerical taxonomy.Bull. Georgia Acad. Sci. 28: 165–185.

    Google Scholar 

  8. Flemer, D. A. 1970. Phytoplankton, pp. 16–25. Natural Resources Institute of the University of Maryland, Contribution No. 397. Gross physical and biological effects of overboard spoil disposal in upper Chesapeake Bay.

  9. Furukawa, K., and Tonomura, K. 1972. Induction of metallic mercury-releasing enzyme in mercury-resistantPseudomonas Agr Biol. Chem. 36: 2441–2448.

    CAS  Google Scholar 

  10. Gaby, W., and Hadley, C. 1957. Analytical laboratory test for the identification ofPseudomonas aeruginosa.J. Bacteriol. 74: 356–358.

    PubMed  CAS  Google Scholar 

  11. Gilmour, J. T., and Miller, M. S. 1973. Fate of a mercuric-mercurous chloride fungicide added to turf grass.J. Environ. Qual. 2: 145–148.

    Article  CAS  Google Scholar 

  12. Goodwyn, F. 1970. Zooplankton, pp. 39–41. Natural Resources Institute of the University of Maryland. Contribution No. 397. Gross physical and biological effects of overboard spoil disposal in upper Chesapeake Bay.

  13. Hatch, W. R., and Ott, W. L. 1968. Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry.Anal. Chem. 40: 2085–2087.

    Article  CAS  Google Scholar 

  14. Holm, H. W., and Cox, M. F. 1974. Mercury transformations in aquatic sediments. Abstract Annual Meeting American Society of Microbiology, p. 25.

  15. Jernelov, A. 1972. Factors in the transformation of mercury to methylmercury, pp. 167–172.In: Environmental Mercury Contamination. R. Hartung and B. D. Dinan, editors. Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan.

    Google Scholar 

  16. Jernelov, A. 1972. Mercury and food chains, pp. 174–177.In: Environmental Mercury Contamination. R. Hartung and B. D. Dinan, editors. Ånn Arbor Science Publishers, Inc., Ann Arbor, Michigan.

    Google Scholar 

  17. Jernelov, A. 1973. Studies in Sweden on feasibility of some methods for restoration of mercury-contaminated bodies of water.Environ. Sci. and Technol.,7: 712–718.

    Article  CAS  Google Scholar 

  18. Kaneko, T., and Colwell, R. R. 1973. Ecology ofVibrio parahaemoly ticus in Chesapeake Bay.J. Bacteriol. 113: 24–32.

    PubMed  CAS  Google Scholar 

  19. Kimura, Y., and Miller, V. L. 1964. The degradation of organomercury fungicides in soil.J. Agr. Food Chem. 12: 253–257.

    Article  CAS  Google Scholar 

  20. Komura, I., Funaba, T., and Izaki, K. 1971. Mechanism of mercuric chloride resistance in microorganisms. II. NADPH-dependent reduction of mercuric chloride and vaporization of mercury from mercuric chloride by a multiple drug resistant strain ofEscherichia coli.J. Biochem. 70: 895–901.

    PubMed  CAS  Google Scholar 

  21. Komura, I., and Izaki, K. 1971. Mechanisms of mercuric chloride resistance by multiple drug resistant strains ofEscherichia coli.J. Biochem. 70: 885–893.

    PubMed  CAS  Google Scholar 

  22. Landner, L. 1971. Biochemical model for the biological methylation of mercury suggested from methylation studiesin vivo withNeurospora crassa.Nature (London) 230: 452–454.

    Article  CAS  Google Scholar 

  23. Lockwood, R. A., and Chen, K. Y. 1972. Chemical transformation of mercury in the aquatic environment. 35th Annual Convention of the American Society of Limnology and Oceanography, Tallahassee, Florida.

  24. Logsdon, G. S., and Symons, J. M. 1972. Mercury removal by conventional water treatment methods. Proceedings 92nd Annual Conference, American Water Works Association, Chicago, Illinois.

  25. Lovelace, T. E., Tubiash, H., and Colwell, R. R. 1968. Quantitative and qualitative commensal bacterial flora ofCrassostrea virginica in Chesapeake Bay.Proc. Natl. Shellfish Assoc 58: 82–87.

    Google Scholar 

  26. Magos, L., Tuffrey, A. A., and Clarkson, T. W. 1964. Volatilization of mercury by bacteria.Brit. J. Ind. Med. 21: 294–298.

    CAS  Google Scholar 

  27. Murchelano, R. A., and Brown, C. 1970. Heterotrophic bacteria in Long Island Sound.Mar. Biol. 7: 1–6.

    Article  Google Scholar 

  28. Nelson, J. D., Blair, W., Brinckman, F. E., Colwell, R. R., and Iverson, W. P. 1973. Biodegradation of phenylmercuric acetate by mercury resistant bacteria.Appl. Microbiol. 26: 321–326.

    PubMed  CAS  Google Scholar 

  29. Nelson, J. D., and Colwell, R. R. 1973. Metabolism of mercury compounds by bacteria in Chesapeake Bay. Third International Congress on Marine Corrosion and Fouling, pp. 767–777. Northwestern University Press, Evanston, Illinois.

    Google Scholar 

  30. Nelson, J. D., and Colwell, R. R. 1974. Effects of tropical storm Agnes upon the bacterial flora of Chesapeake Bay. Chesapeake Research Consortium Pub. No. 27, p. 20.

    Google Scholar 

  31. Nelson, J. D., McClam, H. L., and Colwell, R. R. 1972. The ecology of mercury resistant bacteria in Chesapeake Bay. Preprints 8th Annual Conference Marine Technology Society, pp. 303–312.

  32. Nuzzi, R. 1972. Toxicity of mercury to phytoplankton.Nature (London) 237: 38–40.

    Article  CAS  Google Scholar 

  33. Olson, B. H., and Cooper, R. C. 1973. Methylation of mercury by estuarine sediments. Abstracts Annual Meeting of American Society for Microbiology, p. 48.

  34. Ross, I. S., and Old, K. M. 1973. Thiol compounds and resistance ofPyrenophora avenae to mercury.Trans. Brit. Mycol. Soc. 60: 301–310.

    Article  CAS  Google Scholar 

  35. Schubel, J. R. 1972. The physical and chemical conditions of the Chesapeake Bay.J. Wash. Acad. Sci. 62: 56–87.

    CAS  Google Scholar 

  36. Shewan, J. M., Hobbs, G., and Hodgkiss, W. 1960. A determinative scheme for the identification of certain genera of gram-negative bacteria, with special reference to thePseudomonadaceae.J. Appl. Bacteriol. 23: 379–390.

    Google Scholar 

  37. Smith, J. D., Nicholson, R. A., and Moore, P. J. 1971. Mercury in water of the tidal Thames.Nature (London) 232: 393–394.

    Article  CAS  Google Scholar 

  38. Spangler, W. J., Spigarell, J. L., Rose, J. M., Flippin, R. S., and Miller, H. H. 1973. Degradation of methylmercury by bacteria isolated from environmental samples.Appl. Microbiol. 25: 488–493.

    PubMed  CAS  Google Scholar 

  39. Spangler, W. J., Spigarelli, J. L., Rose, J. M., and Miller, H. H. 1973. Methylmercury: Bacterial degradation in lake sediments.Science 180: 192–193.

    Article  CAS  PubMed  Google Scholar 

  40. Steel, R. G. D., and Torrie, J. H. 1960. Principles and Procedures of Statistics. McGraw-Hill, New York, p. 158.

    Google Scholar 

  41. Steel, R. G. D., and Torrie, J. H. 1960. Principles and Procedures of Statistics. McGraw-Hill, New York, p. 284.

    Google Scholar 

  42. Stutzenberger, F. J., and Bennett, E. O. 1965. Sensitivity of mixed populations ofStaphylococcus aureus andEscherichia coli to mercurials.Appl. Microbiol. 13: 570–574.

    PubMed  CAS  Google Scholar 

  43. Summers, A. O., and Lewis, E. 1973. Volatilization of mercuric chloride by mercury-resistant plasmid-bearing strains ofEscherichia coli, Staphylococcus aureus, andPseudomonas aeruginosa.J. Bacteriol. 113: 1070–1072.

    PubMed  CAS  Google Scholar 

  44. Tonomura, K., Maeda, K., and Futai, F. 1968. Studies on the action of mercury-resistant microorganisms on mercurials. II. The vaporization of mercurials stimulated by mercury-resistant bacterium.J. Ferment. Technol. 46: 685–692.

    CAS  Google Scholar 

  45. Vostal, J. 1972. Transport and transformation of mercury in nature and possible routes of exposure, pp. 15–27.In Mercury in the Environment. L. T. Friberg, and J. Vostal, editors, CRC Press, Cleveland, Ohio.

    Google Scholar 

  46. Walker, J. D., and Colwell, R. R. 1973. Mercury-resistant bacteria and petroleum degradation.Appl. Microbiol. 27: 285–287.

    Google Scholar 

  47. Westoo, G. 1966. Determination of methyl mercury compounds in food stuffs. I. Methyl mercury compounds in fish, identification and determination.Acta Chem. Scand. 20: 2131–2137.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, J.D., Colwell, R.R. The ecology of mercury-resistant bacteria in Chesapeake Bay. Microb Ecol 1, 191–218 (1974). https://doi.org/10.1007/BF02512389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02512389

Keywords

Navigation