Skip to main content
Log in

Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Heavy metals influence the population size, diversity, and metabolic activity of bacteria. In turn, bacteria can develop heavy metal resistance mechanisms, and this can be used in bioremediation of contaminated areas. The purpose of the present study was to understand how heavy metals concentration influence on diversity and distribution of heavy metal-resistant bacteria in Araça Bay, São Sebastião, on the São Paulo coast of Brazil. The hypothesis is that activities that contribute for heavy metal disposal and the increase of metals concentrations in environment can influence in density, diversity, and distribution of heavy metal-resistant bacteria. Only 12 % of the isolated bacteria were sensitive to all of the metals tested. We observed that the highest percentage of resistant strains were in areas closest to the São Sebastião channel, where port activity occurs and have bigger heavy metals concentrations. Bacterial isolated were most resistant to Cr, followed by Zn, Cd, and Cu. Few strains resisted to Cd levels greater than 200 mg L−1. In respect to Cr, 36 % of the strains were able to grow in the presence of as much as 3200 mg L−1. Few strains were able to grow at concentrations of Zn and Cu as high as 1600 mg L−1, and none grew at the highest concentration of 3200 mg L−1. Bacillus sp. was most frequently isolated and may be the dominant genus in heavy metal-polluted areas. Staphylococcus sp., Planococcus maritimus, and Vibrio aginolyticus were also isolated, suggesting their potential in bioremediation of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun W, Zhou Q, Xie X, Liu R (2010) Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mat 174:455–462. doi:10.1016/j.jhazmat.2009.09.074

    Article  CAS  Google Scholar 

  2. Andrade S, Poblet A, Scagliola M, Vodopivez C, Curtosi A, Pucci A, Marcovecchio J (2001) Distribution of heavy metals in surface sediments from an Antarctic marine ecosystem. Environ Monit Assess 66:147–158

    Article  CAS  PubMed  Google Scholar 

  3. Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hortellani MA, Sarkis JES, Abessa DMS, Sousa ECPM (2008) Avaliação da contaminação por elementos metálicos dos sedimentos do estuário Santos–São Vicente. Química Nov. 31:10–19. doi:10.1590/S0100-40422008000100003

  5. Yang H, Rose NL (2003) Distribution of Hg in six lake sediments core across the UK. Sci Total Environ 304:391–404. doi:10.1016/S0048-9697(02)00584-3

    Article  CAS  PubMed  Google Scholar 

  6. Pinto AB, Pagnocca FC, Pinheiro MA, Fontes RF, Oliveira AJ (2015) Heavy metals and TPH effects on microbial abundance and diversity in two estuarine areas of the Southern-central coast of São Paulo State, Brazil. Mar Pollut Bull 96:410–417. doi:10.1016/j.marpolbul.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  7. Poole RK, Gadd GM (1989) Metals: microbe interactions. IRL Press, Oxford, pp 1–37

    Google Scholar 

  8. Ji G, Silver S (1995) Bacterial resistance mechanism for heavy metals of environmental concern. J Indust Microbiol 14:61–75

    Article  CAS  Google Scholar 

  9. Wang Y, Shi J, Wang H, Chen OL, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safat 67:75–81. doi:10.1016/j.ecoenv.2006.03.007

    Article  CAS  Google Scholar 

  10. Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161. doi:10.1263/jbb.102.157

    Article  CAS  PubMed  Google Scholar 

  11. Giller PS, Malmqvist B (1998) The biology of streams and rivers. Oxford University Press, New York

    Google Scholar 

  12. Matyar F (2012) Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea coast. Bull Environ Contam Toxicol 89:551–556. doi:10.1007/s00128-012-0726-4

    Article  CAS  PubMed  Google Scholar 

  13. Glöckner FO, Stal LJ, Sandaa RA, Gasol JM, O’Gara F, Hernandez F, Labrenz M, Stoica E, Varela MM, Bordalo A, Pitta P (2012) Marine microbial diversity and its role in ecosystem functioning and environmental change. In: Calewaert JB, McDonough N (eds) Marine Board Position Paper 17. Marine Board-ESF, Ostend, Belgium

    Google Scholar 

  14. Gillan DC, Danis B, Pernet P, Joly G, Dubois P (2005) Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl Environ Microbiol 71:679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Banerjee S, Gothalwal R, Sahu PK, Sao S (2015) Microbial observation in bioaccumulation of heavy metals from the ash dyke of thermal power plants of Chhattisgarh, India. Adv Biosc Biotechnol 6:131–138. doi:10.4236/abb.2015.62013

    Article  CAS  Google Scholar 

  16. Outten FW, Outten CE, O’halloran T (2000) Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance. In: Storz G, Hengge-Aronis RR (eds) Bacterial stress responses. ASM Press, Washington, D.C, pp 145–157

    Google Scholar 

  17. Hasin AA, Gurman SJ, Murphy LM, Perry A, Smith TJ, Gardiner PE (2010) Remediation of chromium(VI) by a methane-oxidizing bacterium. Environ Sci Technol 44:400–405. doi:10.1021/es901723c

    Article  PubMed  Google Scholar 

  18. Dash HR, Magdwani N, Chakraboryi J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571. doi:10.1007/s00253-012-4584-0

    Article  CAS  PubMed  Google Scholar 

  19. Kacar A, Kocyigit A (2013) Characterization of heavy metal and antibiotic resistant bacteria isolated from Aliaga Ship Dismantling Zone, Eastern Aegean Sea, Turkey. Int J Environ Res 7:895–902

    CAS  Google Scholar 

  20. Nithia C, Pandian SK (2010) Isolation of heterotrophic bacteria from Palk Bay sediments showing heavy metal tolerance and antibiotic production. Microbiol Res 165:578–593. doi:10.1016/j.micres.2009.10.004

    Article  Google Scholar 

  21. ANTAQ. Porto de São Sebastião. Available in: www.antaq.gov.br/portal/pdf/portos/2012/saosebastiao.pdf; Accessed in: 05/09/2015.

  22. Amaral ACZ, Migotto AE, Turra A, Svhaeffer-Novelly Y (2010) Araçá: biodiversidade, impactos e ameaças. Biota Neotropica 10:1–47. doi:10.1590/S1676-06032010000100022

    Article  Google Scholar 

  23. Gubitoso S (2010) Influência de efluentes domésticos e petroquímicos em sedimentos e carapaças de foraminíferos do canal de São Sebastião, SP. Dissertação (Mestrado) – Instituto de Geociências, Universidade de São Paulo, São Paulo

    Book  Google Scholar 

  24. Feng H, Han X, Zhang W, Yu L (2004) A preliminary study of heavy metal contamination in Yangtze River Interdital zone due to urbanization. Mar Poll Bull 49:910–915. doi:10.1016/j.marpolbul.2004.06.014

    Article  CAS  Google Scholar 

  25. Akinbowale OL, Peng H, Grant P, Barton MD (2007) Antibiotic and heavy metal resistance in motile aeromonads and pesudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. Int J Antimicrob Agents 30:177–182

    Article  CAS  PubMed  Google Scholar 

  26. Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Techno 98:3149–3153

    Article  CAS  Google Scholar 

  27. Embley TM, Stackebrandt E (1994) The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol 48:257–289

    Article  CAS  PubMed  Google Scholar 

  28. Sievers F, Wilm A, Dineen D, Gibson TJ, KarplusK LW, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi:10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abessa DMS, Carr RS, Rachid BRF, Sousa ECPM, Hortelani MA, Sarkis JE (2005) Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments. Mar Pollut Bull 50:875–885

    Article  CAS  PubMed  Google Scholar 

  31. USEPA (United States Environmental Protection Agency) (1994) Method 3051. Microwave assisted cid digestion of sediments, sludges. Soils and oilsl. Revision 0. September.

  32. CCME (2002) Canadian environmental quality guidelines, National Guidelines and Standards Office. Canadian Council of Ministers of the Environment, Winnipeg, p 12

    Google Scholar 

  33. Föstner UG, Wittmann GTW (1981) Metal pollution in the aquatic environmental. Springer-Verlag, Berlin

    Book  Google Scholar 

  34. Abessa DM, Rachid BR, Moser GA, Oliveira AJF (2012) Efeitos ambientais da disposição oceânica de esgotos por meio de emissários submarinos: uma revisão. O Mundo da Saúde 36:643–661

    Google Scholar 

  35. Castro-Filho BM (1990) Wind driven currents in the Channel of São Sebastião: winter, 1979. Boletim do Instituto Oceanográfico 38:111–132

    Google Scholar 

  36. Fontes RFC (1995) As Correntes no Canal de São Sebastião. Dissertação de Mestrado. IOUSP, 159p

  37. Azam F, Vaccaro RF, Gillespie PA, Moussalli EI, Hodson RE (1977) Controlled ecosystem pollution experiment: effect of mercury on enclosed water columns. Mar bacterioplank Mar Sci Comm 3:313–329

    CAS  Google Scholar 

  38. Malik A, Khan IF, Aleem A (2002) Plasmid incidence in bacteria from agricultural and industrial soils. World J Microbiol Biotechnol 18:827–833

    Article  CAS  Google Scholar 

  39. Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Indust Microbiol 17:170–178

    CAS  Google Scholar 

  40. Arslam P, Beltrame M, Tomasi A (1987) Intracelullar chromium reduction. Bioch Biphys Acta 931:10–15

    Article  Google Scholar 

  41. Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Current Sci 81:768–775

    CAS  Google Scholar 

  42. Duxbury T (1981) Toxicity of heavy metals to soil bacteria. FEMS Microbiol Letters 11:217–220

    Article  CAS  Google Scholar 

  43. Achard-Joris M, Moreau JL, Lucas M, Baudrimont M, Mesmer-Dudons N, Gonsalez P, Boudou A, Bordineaud JP (2007) Role of metallothioneins in superoxide radical generation during copper redox cycling: defining the fundamental function of metallothioneins. Biochemie 9:1474–1488. doi:10.1016/j.biochi.2007.06.005

    Article  Google Scholar 

  44. Duxbury T, Bicknell B (1983) Metal tolerant bacterial population populations from natural and metal polluted soils. Soil Biol Bioch 15:243–250

    Article  CAS  Google Scholar 

  45. Kafilzadeh F, Zahirian Y, Zolgharnein H (2013) Isolation and molecular identification of mercury resistant bacteria and detection of Escherichia coli mercuric reductase gene from wastewater of Khowr-e-Musa, Iran. Int J Biosc 3:313–318. doi:10.12692/ijb/3.8.313-318

    CAS  Google Scholar 

  46. Matyar F, Kaya A, Dinçer S (2008) Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci Total Environ 407:279–285. doi:10.1016/j.scitotenv.2008.08.014

    Article  CAS  PubMed  Google Scholar 

  47. Malik A, Jaiswal R (2000) Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World J Microbiol Biotechnol 16:177–182

    Article  CAS  Google Scholar 

  48. Spain A, Alm C (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6

    Google Scholar 

  49. Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73:3272–3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zobeel CE (1946) Marine microbiology: a monograph on hydrobacteriology. Chronica Botanica Co, Walthman, M.A

    Google Scholar 

  51. Stach JEM, Bull AT (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Leeuwenhoek 87:3–9

    Article  PubMed  Google Scholar 

  52. Jensen PR, Mincer J, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Leeuwenhoek 87:43–48

    Article  CAS  PubMed  Google Scholar 

  53. Belliveau BH, Staradub ME, Trevor JT (1991) Occurrence of antibiotic and metal resistance and plasmids in Bacillus strains isolated from marine sediment. Canad J Microbiol 37:513–520

    Article  CAS  Google Scholar 

  54. Kamala-Kannan S, Mahadevan S, Krishnamoorthy R (2006) Characterization of a mercury-reduncing Bacillus cereus isolated from the Publicat Lake sediments, South East Coast of India. Archiv Microbiol 185:202–211

    Article  Google Scholar 

  55. Kamala-Kannan S, Krishnamoorthy R, Lee KJ, Purosothaman A, Santhi K, Rao NR (2007) Aerobic chromate reduncing Bacillus cereus isolated from the heavy metal contaminated ennore creek sediment, North of Chennai, Tamil Nadu, South East. India Res J Microbiol 2:133–140

    Article  Google Scholar 

  56. Kamala-Kannan S, Lee KJ (2008) Metal tolerance and antibiotic resistance of Bacillus species isolated from Sunchon Bay, South Korea. Biotechnol 7:149–152

    Article  CAS  Google Scholar 

  57. Baker-Austin C, Wright MS, Stepaunauskas R, Mcarthur JV (2006) Co-selection of antibiotic and heavy metal resistance. Trends Microbiol 14:176–182. doi:10.3389/fmicb.2012.00399

    Article  CAS  PubMed  Google Scholar 

  58. SCENIHR. Scientific Committee on Emerging and Newly Identified Health Risks (2009) Assessment of the antibiotic resistance effects of biocides http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_021.pdf, Accessed in: 27 de setembro de 2014.

  59. Hasman H, Aarestrup FM (2002) tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptides resistance. Antib Agents Chemot 46:1410–1416

    Article  CAS  Google Scholar 

  60. Martínez JL (2011) Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Front Microbio 2:265. doi:10.3389/fmicb.2011.00265

    Google Scholar 

  61. Velázquez-Meza ME (2005) Staphylococcus aureus methicillin-resistant: emergence and dissemination. Salud Publica Mex 47:381–387

    Article  PubMed  Google Scholar 

  62. Anderson Borge GI, Skeie M, Sorhaug T, Langsrud T, Granum PE (2001) Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int J Food Microbiol 69:237–246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank UNESP and all members of the Marine Microbiology Laboratory (MICROMAR) and of the Structural Molecular Biology Laboratory (LABIMES). The Brazilian agency known as the Coordination for the Improvement of Higher Education Personnel (CAPES) and São Paulo Research Foundation (FAPESP) are acknowledged for financial support: The Biota Araça Research Project (process number: 2011/50317-5), coordinated by Dr. Cecília Amaral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Del Busso Zampieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampieri, B.D.B., Pinto, A.B., Schultz, L. et al. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations. Microb Ecol 72, 582–594 (2016). https://doi.org/10.1007/s00248-016-0821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0821-x

Keywords

Navigation