Skip to main content
Log in

Floral scents of hawkmoth-pollinated flowers in Japan

  • Original Articles
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Similarity among the floral scents of hawkmoth-pollinated plants was investigated with headspace samplings. Six of seven plant species belonging to different families were found to be rich in isoprenoids, among which linalool was the most common compound. Linalool showed rhythmicity with a nocturnal increase inLonicera japonica. These findings suggest that linalool is a common attractant for nocturnal hawkmoths. However, the composition of other isoprenoids, benzenoids and fatty acid derivatives varied markedly among the plant species examined. There was a significant correlation between species composition of flower-visiting hawkmoths and specific floral scents, suggesting that attractiveness to each hawkmoth species is dependent upon floral scent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenburger, R. andMatile, P. 1990. Further observations on rhythmic emission of fragrance in flowers. Planta180: 194–197.

    Article  CAS  Google Scholar 

  • Bergström, G., Birgersson, G., Groth, I. andNilsson, L.A. 1992. Floral fragrance disparity between three taxa of lady’s slipperCypripedium calceolus (Orchidaceae). Phytochem.31: 2315–2319.

    Article  Google Scholar 

  • Blight, M.M., Le Métayer, M., Delègue, M.H.P., Pickett, J.A., Marionpoll, F. andWadhams, L.J. 1997. Identification of floral volatiles involved in recognition of oilseed rape flowers,Brassica napus by honeybees,Apis mellifera. J. Chem. Ecol.23: 1715–1727.

    Article  CAS  Google Scholar 

  • Cantelo, W.W. andJacobson, M. 1979. Phenylacetaldehyde attracts moths to bladder flower and to blacklight traps. Environ. Entomol.8: 444–447.

    CAS  Google Scholar 

  • Creighton, C.S., McFadden, T.L. andCuthbert, E.R. 1973. Supplementary data on phenylacetaldehyde: an attractant for Lepidoptera. J. Econ. Entomol.66: 114–115.

    CAS  Google Scholar 

  • Dobson, H.E.M. 1993. Floral volatiles in insect biology.In E.A. Bernays, ed., Insect-Plant Interactions, vol. 5, CRC Press, Florida, pp. 47–81.

    Google Scholar 

  • Ghazoul, J. 1997. The pollination and breeding system ofDipterocarpus obtusifolius (Diptirocarpaceae) in dry deciduous forests of Thailand. J. Nat. Hist.31: 901–916.

    Google Scholar 

  • Grant, V. 1983. The systematic and geographical distribution of hawkmoth flowers in the temperate North American flora. Bot. Gaz.144: 439–449.

    Article  Google Scholar 

  • Gregg, K.B. 1983. Variation in floral fragrances and morphology: Incipient speciation in cycnoches? Bot. Gaz.144: 566–576.

    Article  Google Scholar 

  • Haber, W.A. andFrankie, G.W. 1989. A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica21: 155–172.

    Article  Google Scholar 

  • Harborne, J.B. 1993. Introduction to Ecological Biochemistry. Academic Press, London.

    Google Scholar 

  • Hayashi, N., Nishi, A., Murakami, T., Maeshima, K., Komae, H. andSakao, T. 1985. The scent substances of pierid butterflies (Hebomoia gluasippe Linnaeus) and the volatile components of their food plants (Crataeva religiosa Forst.). Z. Naturforsch.40c: 47–50.

    CAS  Google Scholar 

  • Haynes, K.F., Zhao, J. andLatif, A. 1991. Identification of floral compounds fromAbelia grandiflora that stimulate upwind flight in cabbage looper moths. J. Chem. Ecol.17: 637–646.

    Article  CAS  Google Scholar 

  • Heath, R.R., Landolt, P.J., Dueben, B. andLenczewski, B. 1992. Identification of floral compounds of night-blooming jessamine attractive to cabbage looper moths. Environ. Entomol.21: 854–859.

    CAS  Google Scholar 

  • Ikeda, T., Ohya, E., Makihara, H., Nakashima, T., Saitoh, A., Tate, K. andKojima, K. 1993. Olfactory responses ofAnaglyptus subfasciatus Pic andDemonax transilis Bates (Coleoptera: Cerambycidae) to flower scents. J. Jpn. For. Soc.75: 108–112.

    Google Scholar 

  • Inoue, K. 1983. Systematics of the genusPlatanthera (Orchidaceae) in Japan and adjacent regions with special reference to pollination. J. Fac. Sci. Univ. Tokyo Ill13: 285–374.

    Google Scholar 

  • Jakobson, H.B. andOlsen, C.E. 1994. Influence of climatic factors on emission of flower volatilesin situ. Planta192: 365–371.

    Google Scholar 

  • Jennings, W. andShibamoto, T. 1980. Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography. Academic Press, London.

    Google Scholar 

  • Jürgens, A., Witt, T. andGottsberger, G. 1996. Reproduction and pollination in Central European populations ofSilene andSaponaria species. Bot. Acta109: 316–324.

    Google Scholar 

  • Kaiser, R. 1991. Trapping, investigation and reconstruction of flower scents.In P.M. Müller and D. Lanparsky, eds., Perfumes: Art Science and Technology., Elsevier Applied Science, London, pp. 213–250.

    Google Scholar 

  • Kaiser, R. and Lamparsky, D. 1982. Constituants azotés en trace de quelques absolues de fleurs et leurs headspaces correspondants.In FEDAROM, ed., Proc. 8th Internat. Congress of Essential Oils, Cannes, 1980, Grasse, pp. 287–294.

  • Kaiser, R. andTollsten, L. 1995. An introduction to the scent of Cacti. Flavour and Fragrance J.10: 153–164.

    CAS  Google Scholar 

  • Kawano, S., Odaki, M., Yamaoka, R., Oda-Tanabe, M., Takeuchi, M. andKawano, N. 1995. Pollination biology ofOenothera (Onagraceae). The interplay between floral UV-absorbancy patterns and floral volatiles as signals to nocturnal insects. Pl. Sp. Biol.10: 31–38.

    Article  Google Scholar 

  • Kite, G.C. andSmith, S.A.L. 1997. Inflorescence odour ofSenecio articulatus: temporal variation in isovaleric acid levels. Phytochem.45, 1135–1138.

    Article  CAS  Google Scholar 

  • Knudsen, J.T. andTollsten, L. 1993. Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth pollinated taxa. Bot. J. Linn. Soc.113: 263–284.

    Article  Google Scholar 

  • Knudsen, J.T. andTollsten, L. 1995. Floral scent in batpollinated plants: a case of convergent evolution. Bot. J. Linn. Soc.119: 45–57.

    Google Scholar 

  • Loughrin, J.H., Hamilton-Kemp, T.R., Andersen, R.A. andHildebrand, D.F. 1990. Volatiles from flowers ofNicotiana sylvestris, N. otophara andMalus x Domestica: headspace components and day/night changes in their relative concentrations. Phytochem.29: 2473–2477.

    Article  CAS  Google Scholar 

  • Loughrin, J.H., Hamilton-Kemp, T.R., Andersen, R.A. andHildebrand, D.F. 1991. Circadian rhythm of volatile emission from flowers ofNicotiana sylvestris andN. suaveolens. Physiol. Plant.83: 492–496.

    Article  CAS  Google Scholar 

  • Manly, B.F.J. 1991. Randomization and Monte Carlo methods in biology. Chapman and Hall, London.

    Google Scholar 

  • Matile, P. andAltenburger, R. 1988. Rhythms of fragrance emission in flowers. Planta174: 242–247.

    Article  CAS  Google Scholar 

  • Mookherjee, B.D., Trenkle R.W. andWilson, R.A. 1990. The chemistry of flowers, fruits and spices: live vs. dead a new dimension in fragrance research. Pure Appl. Chem.62: 1357–1364.

    CAS  Google Scholar 

  • Morgan, A.C. andLyon, S.C. 1928. Notes on amyl salicylate as an attractant to the tobacco hornworm moth. J. Econ. Entomol.21: 189–191.

    CAS  Google Scholar 

  • Nilsson, L.A. 1985. Characteristics and distribution of intermediates betweenPlatantera bifolia andP. chlorantha (Orchidaceae) in the Nordic countries. Nord. J. Bot.5: 407–419.

    Google Scholar 

  • Pellmyr, O. 1986. Three pollination morphs inCimicifuga simplex; incipient speciation due to inferiority in competition. Oecologia68: 304–307.

    Article  Google Scholar 

  • Pijl, L. van der. 1961. Ecological aspects of flower evolution. II. Zoophilious flower classes. Evolution15: 44–59.

    Article  Google Scholar 

  • Raguso, R.A. andPichersky, E. 1995. Floral volatiles fromClarkia breweri andC. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Pl. Syst. Evol.194: 55–67.

    Article  CAS  Google Scholar 

  • Schlotzhauer, W.S., Pair, S.D. andHorvat, R.J. 1996. Volatile constituents from flowers of Japanese honeysuckle (Lonicera japonica). J. Agric. Food Chem.44: 206–209.

    Article  CAS  Google Scholar 

  • Tollsten, L. andBergström, J. 1989. Variation and post-pollination changes in floral odours released byPlatanthera bifolia. Nord. J. Bot.9: 359–362.

    Google Scholar 

  • Tollsten, L. andKnudsen, J.T. 1992. Floral scent in dioeciousSalix (Salicaceae)—a cue determining the pollination system? Pl. Syst. Evol.182: 229–237.

    Article  Google Scholar 

  • Tollsten, L., Knudsen, J.T. andBergström, G. 1994. Floral scent in generalisticAngelica (Apiacaae)—an adaptive character? Biochem. Syst. Ecol.22: 161–169.

    Article  CAS  Google Scholar 

  • Wyatt, R. 1983. Pollinator plant interactions and the evolution of breeding systems.In L. Read, ed., Pollination Biology., Academic Press, New York, pp. 51–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyake, T., Yamaoka, R. & Yahara, T. Floral scents of hawkmoth-pollinated flowers in Japan. J. Plant Res. 111, 199–205 (1998). https://doi.org/10.1007/BF02512170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02512170

Key words

Navigation