Skip to main content
Log in

Interval solution of nonlinear equations using linear programming

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A new computational test is proposed for nonexistence of a solution to a system of nonlinear equations in a convex polyhedral regionX. The basic idea proposed here is to formulate a linear programming problem whose feasible region contains all solutions inX. Therefore, if the feasible region is empty (which can be easily checked by Phase I of the simplex method), then the system of nonlinear equations has no solution inX. The linear programming problem is formulated by surrounding the component nonlinear functions by rectangles using interval extensions. This test is much more powerful than the conventional test if the system of nonlinear equations consists of many linear terms and a relatively small number of nonlinear terms. By introducing the proposed test to interval analysis, all solutions of nonlinear equations can be found very efficently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld and J. Herzberger,Introduction to Interval Computations, Academic Press, New York, 1983.

    MATH  Google Scholar 

  2. G. Alefeld and J. Herzberger,A quadratically convergent Krawczyk-like algorithm, SIAM J. Numer. Anal., 20 (1983), pp. 210–219.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Alefeld and F. Potra,A new class of interval methods with higher order of convergence, Computing, 42 (1989), pp. 69–80.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Allgower and K. Georg,Simplicial and continuation methods for approximating fixed points and solutions to systems of equations, SIAM Rev., 22 (1980), pp. 28–85.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. O. Chua and P. M. Lin,Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques, Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

    Google Scholar 

  6. E. R. Hansen,A globally convergent interval method for computing and bounding real roots, BIT, 18 (1978), pp. 415–424.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. R. Hansen and S. Sengupta,Bounding solutions of systems of equations using interval analysis, BIT, 21 (1981), pp. 203–211.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Kashiwagi and S. Oishi,Numerical validation method for nonlinear equations using interval analysis and rational arithmetic, IEICE Trans., J77-A (1994), pp. 1372–1382 (in Japanese).

    Google Scholar 

  9. M. Kashiwagi,Interval arithmetic with linear programming—extension of Yamamura's idea, in Proceedings of 1996 International Symposium on Nonlinear Theory and its Applications, Kochi, Japan, October 1996, pp. 61–64.

  10. R. B. Kearfott,Some tests of generalized bisection, ACM Trans. Math. Software, 13 (1987), pp. 197–220.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. B. Kearfott,Preconditioners for the interval Gauss-Seidel method, SIAM J. Numer. Anal., 27 (1990), pp. 804–822.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. B. Kearfott,Interval arithmetic techniques in the computational solution of nonlinear systems of equations: Introduction, examples, and comparisons, in Computational Solution of Nonlinear Systems of Equations (Lectures in Applied Mathematics, Vol. 26), E. L. Allgower and K. Georg, eds., American Mathematical Society, Providence, RI, 1990, pp. 337–357.

    Google Scholar 

  13. R. B. Kearfott,Decomposition of arithmetic expressions to improve the behavior of interval iteration for nonlinear systems, Computing, 47 (1991), pp. 169–191.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. B. Kearfott and V. Kreinovich, eds.,Applications of interval computations, Kluwer Academic Publishers, Dordrecht, 1996.

    MATH  Google Scholar 

  15. R. Krawczyk,Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken, Computing, 4 (1969), pp. 187–201.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. E. Moore,A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal., 14 (1977), pp. 611–615.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. E. Moore,Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, Philadelphia, 1979.

  18. R. E. Moore and S. T. Jones,Safe starting regions for iterative methods, SIAM J. Numer. Anal., 14 (1977), pp. 1051–1065.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. E. Moore and L. Qi,A successive interval test for nonlinear systems, SIAM J. Numer. Anal., 19 (1982), pp. 845–850.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. J. Moré,A collection of nonlinear model problems, In Computational Solution of Nonlinear Systems of Equations (Lectures in Applied Mathematics, Vol. 26), E. L. Allgower and K. Georg, eds., American Mathematical Society, Providence, RI, 1990, pp. 723–762.

    Google Scholar 

  21. A. Neumaier,Interval iteration for zeros of systems of equations, BIT, 25 (1985), pp. 256–273.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Neumaier,Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, England, 1990.

    MATH  Google Scholar 

  23. S. Oishi,A difficult problem in numerical analysis with guaranteed accuracy is just solved, J. IEICE, 79 (1996), pp. 693–695 (in Japanese).

    Google Scholar 

  24. S. Pastore and A. Premoli,Polyhedral elements: A new algorithm for capturing all the equilibrium points of piecewise-linear circuits, IEEE Trans. Circuits and Systems I, 40 (1993), pp. 124–132.

    Article  MATH  Google Scholar 

  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical Recipes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, New York, 1992.

    Google Scholar 

  26. L. Qi,A note on the Moore test for nonlinear systems, SIAM J. Numer. Anal., 19 (1982), pp. 851–857.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. B. Rall,A comparison of the existence theorems of Kantorovich and Moore, SIAM J. Numer. Anal., 17 (1980), pp. 148–161.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Schwandt,Accelerating Krawczyk-like interval algorithms for the solution of nonlinear systems of equations by using second derivatives, Computing, 35 (1985), pp. 355–367.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Schwandt,Krawczyk-like algorithms for the solution of systems of nonlinear equations, SIAM J. Numer. Anal., 22 (1985), pp. 792–810.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. M. Shearer and M. A. Wolfe,An improved form of the Krawczyk-Moore algorithm, Applied Math. Comp., 17 (1985), pp. 229–239.

    MATH  MathSciNet  Google Scholar 

  31. J. M. Shearer and M. A. Wolfe,Some computable existence, uniqueness, and convergence tests for nonlinear systems, SIAM J. Numer. Anal., 22 (1985), pp. 1200–1207.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. A. Wolfe,A modification of Krawczyk's algorithm, SIAM J. Numer. Anal., 17 (1980), pp. 376–379.

    Article  MATH  MathSciNet  Google Scholar 

  33. K. Yamamura,Exploiting separability in numerical analysis of nonlinear systems, IEICE Trans. Fundamentals, E75-A (1992), pp. 285–293.

    Google Scholar 

  34. K. Yamamura,Simple algorithms for tracing solution curves, IEEE Trans. Circuits and Systems I, 40 (1993), pp. 537–541.

    Article  MATH  Google Scholar 

  35. K. Yamamura,Finding all solutions of piecewise-linear resistive circuits using simple sign tests, IEEE Trans. Circuits and Systems I, 40 (1993), pp. 546–551.

    Article  MATH  Google Scholar 

  36. K. Yamamura,An algorithm for representing functions of many variables by superpositions of functions of one variable and addition, IEEE Trans. Circuits and Systems I, 43 (1996), pp. 338–340.

    Article  MathSciNet  Google Scholar 

  37. K. Yamamura,An algorithm for representing nonseparable functions by separable functions, IEICE Trans. Fundamentals, E79-A (1996), pp. 1051–1059.

    Google Scholar 

  38. K. Yamamura and K. Horiuchi,A globally and quadratically convergent algorithm for solving nonlinear resistive networks, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 9 (1990), pp. 487–499.

    Article  Google Scholar 

  39. K. Yamamura, A. Tokue, and H. Kawata,Interval analysis using linear programming, IEICE Technical Report, CAS96-6, pp. 37–43, June 1996; also in Proceedings of 1996 International Symposium on Nonlinear Theory and its Applications, Kochi, Japan, October 1996, pp. 49–52.

  40. K. Yamamura and M. Ochiai,An efficient algorithm for finding all solutions of piecewise-linear resistive circuits, IEEE Trans. Circuits and Systems I, 39 (1992), pp. 213–221.

    Article  MATH  Google Scholar 

  41. K. Yamamura and T. Ohshima,Finding all solutions of piecewise-linear resistive circuits using linear programming, in Proceedings of 1995 International Symposium on Nonlinear Theory and its Applications, Las Vegas, Nevada, December 1995, pp. 775–780.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Kaj Madsen.

This work was partially supported by the Japanese Ministry of Education.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamura, K., Kawata, H. & Tokue, A. Interval solution of nonlinear equations using linear programming. Bit Numer Math 38, 186–199 (1998). https://doi.org/10.1007/BF02510924

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510924

AMS subject classification

Key words

Navigation