Skip to main content
Log in

Photocontrol of anthocyanin biosynthesis in tomato

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Juvenile anthocyanin biosynthesis has been studied in dark-grown seedlings of tomato (Lycopersicon esculentum Mill.) wild types (WTs) and photomorphogenic mutants. During a subsequent 24-hr period of monochromatic irradiation at different fluence rates of red light (R) the fluence-rate response relationships for induction of anthocyanin in all the WTs are similar, yet complex, showing a response at low fluence rates (LFRR) followed by a fluence rate-dependent high irradiance response (HIR). In the hypocotyl this response is restricted to the sub-epidermal layer of cells. The high-pigment-1 (hp-1) mutant exhibits a strong amplification of both response components. Theatroviolacea (atv) mutant shows strongest amplification of the HIR component. In contrast, a transgenic line overexpressing an oat phytochrome A gene (PHYA3 +) shows a most dramatic amplification of the LFRR component. The far-red light (FR)-insensitive (fri) mutant, deficient in phytochrome A (phyA), lacks the LFRR component whilst retaining a normal HIR. The temporarily R-insensitive (tri) mutant, deficient in phytochrome B1 (phyB1) retains the LFRR, but lacks the HIR. Thehp-1,fri andhp-1,tri double mutant, exhibit amplified, yet qualitatively similar responses to the monogenicfri andtri mutants. Thefri,tri double mutant lacks both response components in R, but a residual response to blue light (B) remains. Similarly, theaurea (au) mutant deficient in phytochrome chromophore biosynthesis and presumably all phytochromes, lacks both response components in the R and FR regions of the spectrum. Experiments at other wavelengths demonstrate that while there is only a small response in the FR spectral region (729 nm) in tomato, there is an appreciable HIR response in the near FR at 704 nm, which is retained in thetri mutant. This suggests that the labile phyA pool participates in the HIR at this wavelength. The intense pigmentation (Ip) mutant appears to be specifically deficient in the B1 induced anthocyanin biosynthesis. Adult plants, grown under fluorescent light/dark cycles, show a reduction of anthocyanin content of young developing leaves upon application of supplemtary or end-of-day FR. The involvement of different phytochrome species in anthocyanin biosynthesis based on micro-injection studies into theau mutant and studies using type specific phytochrome mutants is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

B:

blue light

D:

dark(ness)

FR:

far-red light

HIR:

high irradiance response

LFRR:

low fluence rate response

R:

red light

WL:

white light

WT:

wild type

References

  • Adamse, P., Peters, J.L., Jaspers, P.A.P.M., Van Tuinen, A., Koornneef, M. andKendrick, R.E. 1989. Photocontrol of anthocyanin synthesis in tomato seedlings: a genetic approach. Photochem. Photobiol.50: 107–111.

    CAS  Google Scholar 

  • Ahmad, M. andCashmore, A.R. 1996. Seeing blue: the discovery of cryptochrome. Plant Mol. Biol.30: 851–861.

    Article  PubMed  CAS  Google Scholar 

  • Batschauer, A., Gilmartin, P.M., Nagy, F. andSchäfer, E 1994. The molecular biology of photoregulated genes.In R.E. Kendrick and G.H.M. Kronenberg, eds., Photomorphogenesis in Plants, 2nd Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.559–599.

    Google Scholar 

  • Bowler, C. andChua, N.-H. 1994. Emerging themes of plant signal transduction. Plant Cell6: 1529–1541.

    Article  PubMed  CAS  Google Scholar 

  • Bowler, C., Neuhaus, G., Yamagata H. andChua, N.-H. 1994a. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell77: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Bowler, C., Yamagata, H., Neuhaus, G. andChua, N.-H. 1994b. Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev.8: 2188–2202.

    PubMed  CAS  Google Scholar 

  • Boylan, M.T. andQuail, P.H. 1989. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell1: 765–773.

    Article  PubMed  CAS  Google Scholar 

  • Boylan, M.T. andQuail, P.H. 1991. Phytochrome A overexpression inhibits hypocotyl elongation in transgenicArabidopsis. Proc. Natl. Acad. Sci. USA,88: 10806–10810.

    Article  PubMed  CAS  Google Scholar 

  • Drumm-Herrel, H. 1987. Blue light control of pigment biosynthesis—Anthocyanin biosynthesis.In H. Senger, ed., Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms, Vol. 1, CRC Press, Florida, USA, pp. 65–74.

    Google Scholar 

  • Drumm-Herrel, H. andMohr, H. 1982. The effect of prolonged light exposure on the effectiveness of phytochrome in anthocyanin synthesis in tomato seedlings. Photochem. Photobiol.35: 233–236.

    CAS  Google Scholar 

  • Goud, K.V., Sharma, R., Kendrick, R.E. andFuruya, M. 1991. Photoregulation of phenylalanine ammonia lyase is not correlated with anthocyanin induction in photomorphogenic mutant of tomato (Lycopersicon esculentum L.). Plant Cell Physiol.32: 1251–1258.

    CAS  Google Scholar 

  • Hauser, B.A., Cordonnier-Pratt, M.-M., Daniel-Vedele, F. andPratt, L.H. 1995. The phytochrome gene family in tomato includes a novel subfamily. Plant Mol. Biol.29: 1143–1155.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, R.E., Kerckhoffs, L.H.J., Pundsnes, A.S., Van Tuinen, A., Koornneef, M., Nagatani, A., Terry, M.J., Tretyn, A., Cordonnier-Pratt M.-M., Hauser, B. andPratt, L.H. 1994. Photomorphogenic mutants of tomato. Euphytica79: 227–234.

    Article  Google Scholar 

  • Kerckhoffs, L.H.J., De Groot, N.A.M.A., Van Tuinen, A., Schreuder, M.E.L., Nagatani, A., Koornneef M. and Kendrick, R.E. 1997a. Physiological characterization of exaggerated-photoresponse mutants of tomato. J. Plant Physiol. (in press).

  • Kerckhoffs, L.H.J., Kendrick, R.E., Whitelam, G.C. andSmith, H. 1992. Extension growth and anthocyanin responses of photomorphogenic tomato mutants to changes in the phytochrome photoequilibrium during the daily photoperiod. Photochem. Photobiol.56: 611–615.

    CAS  Google Scholar 

  • Kerckhoffs, L.H.J., Schreuder, M.E.L., Van Tuinen, A., Koornneef M. andKendrick R.E. 1997b. Phytochrome control of anthocyanin biosynthesis in tomato seedlings: analysis using photomorphogenic mutants. Photochem. Photobiol.65: 374–381.

    CAS  Google Scholar 

  • Kerchkoffs, L.H.J., Van Tuinen, A., Hauser, B.A., Cordonnier-Pratt, M.-M., Nagatani, A., Koornneef, M., Pratt, L.H. andKendrick, R.E. 1996. Molecular analysis of tri-mutant alleles in tomato indicates theTri locus is the gene encoding the apoprotein of phytochrome B1. Planta199: 152–157.

    Google Scholar 

  • Kunkel, T., Neuhaus, G., Batschauer, A., Chua, N.-H. andSchäfer, E. 1996. Functional analysis of yeast-derived phytochrome A and B phycocyanobilin adducts. Plant J.10: 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli, A.L. 1985. Light-dependent anthocyanin synthesis: a model system for the study of plant photomorphogenesis. Bot. Rev.51: 107–157.

    Google Scholar 

  • Mancinelli, A.L. 1994. The physiology of phytochrome action.In R.E. Kendrick and G.H.M. Kronenberg, eds., Photomorphogenesis in Plants, 2nd Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 211–269.

    Google Scholar 

  • McCormac, A.C., Whitelam, G. andSmith, H. 1992 Light-grown plants of transgenic tobacco expressing an introduced oat phytochrome A gene under the control of a constitutive viral promotor exhibit persistent growth inhibition by far-red light. Planta188: 173–181.

    Article  CAS  Google Scholar 

  • Millar, A.J., McGrath, R.B. andChua, N.-H. 1994. Phytochrome phototransduction pathways. Annu. Rev. Genet.28: 325–349.

    Article  PubMed  CAS  Google Scholar 

  • Mohr, H. 1994. Coaction between pigment systems.In R.E. Kendrick and G.H.M. Kronenberg, eds., Photomorphogenesis in Plants, 2nd Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.353–373.

    Google Scholar 

  • Mol, J., Jenkins, G., Schäfer, E. andWeiss, D. 1996. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Critical Rev. Plant Sci.15: 525–557.

    CAS  Google Scholar 

  • Neuhaus, G., Bowler, C. Kern, R. andChua, N.-H. 1993. Calcium/calmodulin-dependent and-independent phytochrome signal transduction pathways. Cell73: 937–952.

    Article  PubMed  CAS  Google Scholar 

  • Peters, J.L., Schreuder, M.E.L., Heeringa, G.H., Wesselius, J.C., Kendrick, R.E. andKoornneef, M. 1992a. Analysis of the response of photomorphogetic tomato mutants to end-of-day far-red light. Acta Hort.305: 67–77.

    Google Scholar 

  • Peters, J.L., Schreuder, M.E.L., Verduin, S.J.W. andKendrick, R.E. 1992b. Physiological characterization of a high-pigment mutant of tomato. Photochem. Photobiol.56: 75–82.

    CAS  Google Scholar 

  • Peters, J.L., Van Tuinen, A., Adamse, P., Kendrick, R.E. andKoornneef, M. 1989. High-pigment mutants of tomato exhibit high sensitivity for phytochrome action. J. Plant Physiol.137: 291–296.

    Google Scholar 

  • Pratt, L.H., Cordonnier-Pratt M.-M., Kelmenson, P.M., Lazarova, G.I. and Alba, R.M. 1997. The phytochrome gene family in tomato (Solanum lycopersicum L.). Plant Cell Environ. in press

  • Quail, P.H., Boylan, M.T., Parks, B.M., Short T.W., Xu, Y. andWagner, D. 1995. Phytochromes: photosensory perception and signal transduction.Science 268: 675–680.

    PubMed  CAS  Google Scholar 

  • Roux, S.J. 1994. Signal transduction in phytochrome responses.In R.E. Kendrick and G.H.M. Kronenberg, eds., Photomorphogenesis in Plants, 2nd Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 187–209.

    Google Scholar 

  • Sharma, R., Lópe-Juez, E., Nagatani, A. andFuruya, M. 1993. Identification of photo-inactive phytochrome A in etiolated seedlings and photo-active phytochrome B in green leaves of theaurea mutant of tomato. Plant J.4: 1035–1042.

    Article  PubMed  CAS  Google Scholar 

  • Terry, M.J. andKendrick, R.E. 1996. Theaurea andyellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J. Biol. Chem.271: 21681–21686.

    Article  PubMed  CAS  Google Scholar 

  • Van Tuinen, A., Kerckhoffs, L.H.J., Nagatani, A., Kendrick, R.E. andKoornneef, M. 1995a. Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Mol. Gen. Genet.246: 133–141.

    Article  PubMed  Google Scholar 

  • Van Tuinen, A., Kerckhoffs, L.H.J., Nagatani, A., Kendrick, R.E. andKoornneef, M. 1995b. A temporarily red light-insensitive mutant of tomato lacks a light-stable, B-like phytochrome. Plant Physiol.108: 939–947.

    PubMed  Google Scholar 

  • Van Tuinen, A., Cordonnier-Pratt, M.-M., Pratt, L.H., Verkerk, R., Zabel P. andKoornneef, M. 1997. The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor. Appl. Genet.94: 115–122.

    Article  Google Scholar 

  • Van Tuinen, A., Hanhart, C.J., Kerckhoffs, L.H.J., Nagatani, A., Boylan, M.T., Quail, P.H., Kendrick, R.E. andKoornneef, M. 1996. Analysis of phytochromedeficientyellow-green-2 andaurea mutants of tomato. Plant J.9: 173–182.

    Article  Google Scholar 

  • Von Wettstein-Knowles, P. 1968. Mutations affecting anthocyanin synthesis in the tomato. II. Physiology. Hereditas60: 255–275.

    Google Scholar 

  • Whitelam, G.C. andHarberd, N.P. 1994. Action and function of phytochrome family members revealed through the study of mutant and transgenic plants. Plant Cell Environ.17: 615–625.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Kendrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huub, L., Kerckhoffs, J. & Kendrick, R.E. Photocontrol of anthocyanin biosynthesis in tomato. J. Plant Res. 110, 141–149 (1997). https://doi.org/10.1007/BF02506853

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506853

Key words

Navigation