Skip to main content
Log in

Seeing blue: the discovery of cryptochrome

  • Mini-Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ahmad M, Cashmore AR: HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a bluelight photoreceptor. Nature 366: 162–166 (1993).

    Article  PubMed  Google Scholar 

  2. Ahmad M, Cashmore AR: Characterization of a blue light photoreceptor in Arabidopsis thaliana. In: Chua NH, Nasrallah J, Sundaresan V (eds) Signalling in Plant Development, Sep 27–Oct 1, p. 5. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1995).

    Google Scholar 

  3. Ahmad M, Lin C, Cashmore AR: Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J 8: 653–658 (1995).

    Article  PubMed  Google Scholar 

  4. Asard H, Horemans N, Briggs WR, Caubergs RJ: Bluelight perception by endogenous redox components of the plant plasma membrane. Photochem Photobiol 61: 518–522 (1995).

    Google Scholar 

  5. Assmann SM: Signal-transduction in guard-cells. Annu Rev Cell Biol 9: 345–375 (1993).

    PubMed  Google Scholar 

  6. Ballare CL, Barnes PW, Flint SD: Inhibition of hypocotyl elongation by ultraviolet-b radiation in de-etiolating tomato seedlings. 1. the photoreceptor. Physiol Plant 93: 584–592 (1995).

    Article  Google Scholar 

  7. Batschauer A: A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA-damage. Plant J 4: 705–709 (1993).

    Article  PubMed  Google Scholar 

  8. Blum DE, Neff MM, Vanvolkenburgh E: Light-stimulated cotyledon expansion in the blu3 and hy4 mutants of Arabidopsis thaliana. Plant Physiol 105: 1433–1436 (1994).

    Article  PubMed  Google Scholar 

  9. Bowler C, Chua NH: Emerging themes of plant signal-transduction. Plant Cell 6: 1529–1541 (1994).

    Article  PubMed  Google Scholar 

  10. Casal JJ, Boccalandro H: Co-action between phytochrome B and HY4 in Arabidopsis thaliana. Planta 197: 213–218 (1995).

    PubMed  Google Scholar 

  11. Cherry JR, Vierstra RD: The use of transgenic plants to examine phytochrome structure/function. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants. 2nd ed., pp. 271–297. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  12. Cho MH, Spalding EP: An anion channel mediating growth-inhibition by blue-light in Arabidopsis seedlings. Plant Physiol 108: 86 (1995).

    Google Scholar 

  13. Chory J: Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends Genet 9(5): 167–172 (1993).

    Article  PubMed  Google Scholar 

  14. Chory J: Plant phototransduction-phytochrome signal-transduction. Curr Biol 4: 844–846 (1994).

    Article  PubMed  Google Scholar 

  15. Chory J, Peto C, Saganich R, Pratt L, Ausubel F: Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1: 867–880 (1989).

    Article  PubMed  Google Scholar 

  16. Conley TR, Shih MC: Effects of light and chloroplast functional state on expression of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in long hypocotyl (hy) mutants and wild-type Arabidopsis thaliana. Plant Physiol 108: 1013–1022 (1995).

    Article  PubMed  Google Scholar 

  17. Cosgrove DJ: Kinetic Separation of phototropism from blue-light inhibition of stem elongation. Photochem Photobiol 42: 745–751 (1985).

    PubMed  Google Scholar 

  18. Cosgrove DJ: Photomodulation of growth. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd ed., pp. 631–658. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  19. Danon A, Mayfield S: Light-regulated translation of chloroplast messenger RNAs through redox potential. Science 266: 1717–1719 (1994).

    PubMed  Google Scholar 

  20. Darwin C: The Power of Movement in Plants. D. Appleton, Company, New York (1881).

    Google Scholar 

  21. Deng XW: Fresh view of light signal-transduction in plants. Cell 76: 423–426 (1994).

    Article  PubMed  Google Scholar 

  22. Feldmann KA: T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum (1). Plant J 1: 71–82 (1991).

    Google Scholar 

  23. Galland P, Senger H: Flavins as possible blue-light photoreceptors. In: Holmes MG (ed) Photoreceptor Evolution and Function, pp. 65–124. Academic Press, London (1991).

    Google Scholar 

  24. Galland P: Forty years of blue-light research and no anniversary: Photochem Photobiol 56: 847–853 (1992).

    Google Scholar 

  25. Goto N, Yamamoto KT, Watanabe M: Action spectra for inhibition of hypocotyl growth of wild-type plants and of the hy2 long-hypocotyl mutant of Arabidopsis thaliana L. Photochem Photobiol 57: 867–871 (1993).

    Google Scholar 

  26. Gressel J: Blue light photoreception. Photochem Photobiol 30: 749–754 (1979).

    Google Scholar 

  27. Heelis PF, Hartman RF, Rose SD: Photoenzymic repair of UV-damaged DNA: a chemist's perspective. Chem Soc Rev 24: 289 (1995).

    Article  Google Scholar 

  28. Holmes MG: Photoreceptor Evolution and Function. Academic Press, London (1991).

    Google Scholar 

  29. Horwitz BA: Properties and transduction chains of the UV and blue light photoreceptors. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd ed, pp. 327–350. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  30. Jackson JA, Jenkins GI: Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant. Planta 197: 233–239 (1995).

    Article  PubMed  Google Scholar 

  31. Jorns MS, Baldwin ET, Sancar GB, Sancer A: Action mechanism of Escherichia coli DNA photolyase. II. Role of the chromophores in catalysis. J Biol Chem 262: 486–491 (1987).

    PubMed  Google Scholar 

  32. Jorns MS, Wang B, Jordan SP, Chanderkar LP: Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives. Biochemistry 29: 552–561 (1990).

    PubMed  Google Scholar 

  33. Kaufman LS: Transduction of blue-light signals. Plant Physiol 102: 333–337 (1993).

    PubMed  Google Scholar 

  34. Kearns EV, Assmann SM: The guard cell-environment connection. Plant Physiol 102: 711–715 (1993).

    PubMed  Google Scholar 

  35. Kendrick RE, Kronenberg GHM: Photomorphogenesis in Plants, 2nd ed. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  36. Koornneef M, Kendrick RE: Photomorphogenic mutants of higher plants. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd ed., pp 601–628. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  37. Koornneef M, Rolff E, Spruit CJP: Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100: 147–160 (1980).

    Google Scholar 

  38. Li YF, Sancar A: Active site of Escherichia coli DNA photolyase: mutations at Trp277 alter the selectivity of the enzyme without affecting the quantum yield of photorepair. Biochemistry 29: 5698–5706 (1990).

    PubMed  Google Scholar 

  39. Lin C, Ahmad M, Gordon D, Cashmore AR: Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, uv-a, and green light. Proc Natl Acad Sci USA 92: 8423–8427 (1995).

    PubMed  Google Scholar 

  40. Lin C, Cashmore AR: A Blue-light photoreceptor regulates different aspects of plant development-an analysis of transgenic Arabidopsis plants overexpressing HY4 gene. J Cell Biochem 21A: 495 (1995).

    Google Scholar 

  41. Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR: Association of flavin adenine dinucleotide with the Arabidopsis blue-light receptor CRY1. Science 269: 968–970 (1995).

    PubMed  Google Scholar 

  42. Liscum E, Briggs WR: Mutations in the nph1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7: 473–485 (1995).

    Article  PubMed  Google Scholar 

  43. Liscum E, Hangarter RP: Photomorphogenic mutants of Arabidopsis thaliana reveal activities of multiple photosensory systems during light-stimulated apical-hook opening. Planta 191: 214–221 (1993).

    Article  Google Scholar 

  44. Liscum E, Hangarter RP: Mutational analysis of blue-light sensing in Arabidopsis. Plant Cell Envir 17: 639–648 (1994).

    Google Scholar 

  45. Liscum E, Young JC, Poff KL, Hangarter RP: Genetic separation of phototropism and blue light inhibition of stem elongation. Plant Physiol 100: 267–271 (1992).

    PubMed  Google Scholar 

  46. Lorenzi R, Ceccarelli N, Lercari B, Gualtieri P: Identification of retinal in higher plants: is a rhodopsin-like protein the blue-light receptor? Phytochemistry 36: 599–600 (1994).

    Article  Google Scholar 

  47. Malhotra K, Kim ST, Batschauer A, Dawut L, Sancar A: Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high-degree of sequence homology to DNA photolyase contain the 2 photolyase cofactors but lack DNA repair activity. Biochemistry 34: 6892–6899 (1995).

    PubMed  Google Scholar 

  48. Malhotra K, Kim ST, Sancar A: Characterization of a medium wavelength type DNA photolyase: purification and properties of photolyase from Bacillus firmus. Biochemistry 33: 8712–8718 (1994).

    PubMed  Google Scholar 

  49. Mancinelli AL, Rossi F, Moroni A: Cryptochrome, phytochrome and anthocyanin production. Plant Physiol 96: 1079–1085 (1991).

    Google Scholar 

  50. Mancinelli AL: The physiology of phytochrome action. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd ed, pp. 211–269. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  51. Mohr H: Coaction between pigment systems. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd ed., pp. 353–372. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  52. Nagatani A, Chory J, Furuya M: Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant Cell Physiol 32: 1119–1122 (1991).

    Google Scholar 

  53. Ninnemann H: Some aspects of blue-light research during the last decade. Photochem Photobiol 61: 22–31 (1995).

    PubMed  Google Scholar 

  54. Oelmuller R, Kendrick RE: Blue light is required for survival of the tomato phytochrome-deficient aurea mutant and the expression of four nuclear genes coding for plastidic proteins. Plant Mol Biol 16: 293–299 (1991).

    PubMed  Google Scholar 

  55. Oelmuller R, Kendrick RE, Briggs WR: Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea mutant of tomato. Plant Mol Biol 13: 223–232 (1989).

    Article  PubMed  Google Scholar 

  56. Pang Q, Hays JB: UV-B-inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol 95: 536–543 (1991).

    Google Scholar 

  57. Park HW, Kim ST, Sancar A, Deisenhofer J: Crystal-structure of DNA photolyase from E. coli. Science 268: 1866–1872 (1995).

    PubMed  Google Scholar 

  58. Parks BM, Quail PH: Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3: 1177–1186 (1991).

    Article  PubMed  Google Scholar 

  59. Payne G, Heelis PF, Rohrs BR, Sancar A: Active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro. Biochemistry 26: 7121–7127 (1987).

    PubMed  Google Scholar 

  60. Pirson A: 60 years in algal physiology and photosynthesis. Photosyn Res 40: 209–221 (1994).

    Google Scholar 

  61. Pratt LH: Distribution and localization of phytochrome within the plant. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd ed., pp. 163–185. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  62. Quail PH: Phytochrome genes and their expression. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd ed., pp. 71–104. Kluwer Academic Publishers, dordrecht (1994).

    Google Scholar 

  63. Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D: Phytochromes: photosensory perception and signal transduction. Science 268: 675–680 (1995).

    PubMed  Google Scholar 

  64. Quinones MA, Zeiger E: A putative role of the xanthophyll, zeaxanthin, in blue-light photoreception of corn coleoptiles. Science 264: 558–561 (1994).

    Google Scholar 

  65. Reymond P, Short TW, Briggs WR, Poff KL: Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc Natl Acad Sci USA 89: 4718–4721 (1992).

    PubMed  Google Scholar 

  66. Rubinstein B, Luster DG: Plasma-membrane redox activity: components and role in plant processes. Annu Rev Plant Physiol Plant Mol Biol 44: 131–155 (1993).

    Article  Google Scholar 

  67. Rubinstein B, Stern AI: The role of plasma membrane redox activity in light effects in plants. J Bioenerg Biomem 23: 393–408 (1991).

    Google Scholar 

  68. Sachs J: Wirkungen des farbigen Lichts auf Pflanzen. Bot Z: 353–358 (1864).

  69. Sancar A: Structure and function of DNA photolyase. Biochemistry 33: 2–9 (1994).

    PubMed  Google Scholar 

  70. Sarkar HK, Song PS: Blue light induces phototransformation of phytochrome in the presence of flavin. Photochem Photobiol 35: 243–246 (1982).

    Google Scholar 

  71. Senger H: Cryptochrome, some terminological thoughts. In: Senger H (ed) Blue Light Effects in Biological Systems, p. 72. Springer-Verlag, Berlin (1984).

    Google Scholar 

  72. Senger H, Schmidt W: Diversity of photoreceptors. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd ed., pp. 301–325. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  73. Short TW, Briggs WR: The transduction of blue-light signals in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 45: 143–171 (1994).

    Article  Google Scholar 

  74. Small DB, Min B, Lefebvre PA: Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light photoreceptor family. Plant Mol Biol 28: 443–454 (1995).

    PubMed  Google Scholar 

  75. Somers DE, Sharrock RA, Tepperman JM, Quail PH: The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. Plant Cell 3: 1262–1274 (1991).

    Article  Google Scholar 

  76. Spalding EP, Cosgrove DJ: Large membrane depolarization precedes blue-light inhibition of growth in cucumber hypocotyls. Planta 178: 407–410 (1989).

    PubMed  Google Scholar 

  77. Spalding EP, Cosgrove DJ: Mechanism of blue-light induced plasma-membrane depolarization in etiolated cucumber hypocotyls. Planta 188: 199–205 (1992).

    Article  PubMed  Google Scholar 

  78. Srivastava A, Zeiger E: The inhibitor of zeaxanthin formation, dithiothreitol, inhibits blue light stimulated stomatal opening in Vicia faba. Planta 196: 445–449 (1995).

    Article  Google Scholar 

  79. Terzaghi WB, Cashmore AR: Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46: 445–474 (1995).

    Article  Google Scholar 

  80. Walne PL, Gualtieri P: Algal visual proteins: an evolutionary point-of-view. Crit Rev Plant Sci 13: 185–197 (1994).

    Google Scholar 

  81. Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP: Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5: 757–768 (1993).

    Article  PubMed  Google Scholar 

  82. Yanovsky MJ, Casal JJ, Whitelam GC: Phytochrome A, phytochrome B and hy4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: weak deetiolation of the phya mutant under dense canopies. Plant Cell Envir 18: 788–794 (1995).

    Google Scholar 

  83. Yasui A, Eker A, Yasuhira S, Yajima H, Kobayashi T, Takao M, Oikawa A: A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J 13: 6143–6151 (1994).

    PubMed  Google Scholar 

  84. Young JC, Liscum E, Hangarter RP: Spectral dependence of light-inhibited hypocotyl elongation in photomorphogenic mutants of Arabidopsis: evidence for a UV-A photosensor. Planta 188: 106–114 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, M., Cashmore, A.R. Seeing blue: the discovery of cryptochrome. Plant Mol Biol 30, 851–861 (1996). https://doi.org/10.1007/BF00020798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020798

Keywords

Navigation