Skip to main content
Log in

Fictitious degree of hydration method for the basic creep of early age concrete

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

At the Magnel Laboratory for Concrete Research, University of Ghent, Belgium, an extensive experimental programme was set up in order to study the basic creep behaviour of early age concrete. Tests were carried out for a loading age ranging from 12 hours to 14 days, 2ith two different stress levels: 20% and 40% of the compressive strength at the age of loading. Three different cement types were considered: one Portland cement and two blast furnace slag cements. Based on the experimental results a new fundamental model is proposed. The basic creep evolution is completely related to the evolution of the degree of hydration. Time is no longer an explicit parameter. The stress-strain non-linearity of the basic creep is correlated with the stress-strain non-linearity of the instantaneous deformation at loading. Furthermore, based on the fundamental basic creep model and following the principles of the equivalent time method a new degree of hydration based formulation for the early age basic creep under varying stresses is developed: the fictitious degree of hydration method. Simulations of experimental results show that this new method provides a good alternative for the traditional superposition method.

Résumé

Au laboratoire Magnel de Recherche sur le Béton (Université de Gand, Belgique), on a réalisé un vaste programme de recherche expérimentale concernant le fluage de base du béton en phase de durcissement. On a exécuté des essais de fluage à partir d'un âge variant de 12 heures à 14 jours, et ceci à deux niveaux de compression: 20% et 40% de la résistance en compression à l'âge de la mise en charge. Un ciment Portland et deux ciments de haut fourneau ont été pris en considération. Sur la base des résultats expérimentaux, on a établi un nouveau modèle fondamental non linéaire. Ce modèle décrit la relation entre l'évolution du fluage de base du béton jeune et l'évolution du degré d'hydratation. Le temps n'intervient plus d'une manière explicite. En plus, il y a une corrélation entre la non-linéarité du fluage de base et celle de la déformation instantanée. Ensuite, sur la base de ce nouveau modèle et par analogie avec la méthode du temps équivalent, on a établi une nouvelle méthode: celle du degré d'hydratation fictif. Plusieurs essais de fluage sous contrainte variable ont permis de constater que la nouvelle méthode est une alternative valable pour la méthode de superposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

parameter

a:

parameter

b:

parameter

c1 :

parameter

c2 :

parameter

Eco :

Young's modulus

fc :

concrete strength

r:

degree of hydration

rb :

degree of hydration at loading

rbf :

fictitious degree of hydration

t:

time

tb :

loading age

tbf :

fictitious loading age

± b :

stress level at loading

ε c :

strain

ε cc :

creep strain

ε c0 :

instantaneous deformation at loading

ε c1 :

strain at peak stress

ν:

normalized strain

σ:

stress

σ c :

compressive stress

ϕ c :

creep coefficient

Φ:

creep function

References

  1. Acker, P., Abiar, G. and Malier, Y., ‘Modèle du comportement différé du béton prenant en compte l'hygrométrie locale’, in ‘Creep and Shrinkage of Concrete’ (ed. Bažant), Evanston, 1986, 815–824.

  2. Acker, P., Lau, M. Y. and Collet, F., ‘Comportement différé du béton: validation expérimentale de la méthode du temps équivalent’,Bulletin liaison Lab. Ponts et Chaussées 163 (1989) 31–39.

    Google Scholar 

  3. Acker, P. and Eymard, R., ‘Thermal and hygral effects in concrete structures: how to account for creep’, in ‘Behaviour of concrete elements under thermal and hygral gradients’ (ed. Schwesinger), Weimar, 1992, 191–197.

  4. Bažant, Z. P. and Carol, I., ‘Preliminary guidelines and recommendations for characterizing creep and shrinkage in structural design codes’, in ‘Creep and Shrinkage of concrete’ (eds. Bažant and Carol), E & FN Spon, London, 1993, 805–829.

    Google Scholar 

  5. Bažant, Z. P. and Kim, J.-K., ‘Improved prediction model for time-dependent deformations of concrete: Part 2— Basic creep’,Mater. Struct. 24 (1991) 409–421.

    Article  Google Scholar 

  6. Bournazel, J. P., ‘Contribution à l'étude du caractère thermomécanique de la maturation du béton’, Thèse de doctorat de l'Université Paris 6, 1992.

  7. Bournazel, J. P. and Martineau, J. P., ‘A laboratory test to analyse creep under tension of young concrete’, in ‘Creep and Shrinkage of Concrete’ (eds. Bažant and Carol), E & FN Spon, London, 1993, 57–62.

    Google Scholar 

  8. De Borst, R., Van Den Boogaard, A. H., Sluys, L. J. and Van Den Bogert, P. A. J., ‘Computational issues in time dependent deformation and fracture of concrete’, in ‘Creep and Shrinkage of Concrete’ (Bažant and Carol), E & FN Spon, London, 1993, 309–325.

    Google Scholar 

  9. De Schutter, G. and Taerwe, L., ‘General hydration model for portland cement and blast furnace slag cement’,Cem. Con. Res. 25 (3) (1995) 593–604.

    Article  Google Scholar 

  10. De Schutter, G. and Taerwe, L., ‘Specific heat and thermal diffusivity of hardening concrete’,Mag. Con. Res. 47 (172) (1995) 203–208.

    Google Scholar 

  11. De Schutter, G. and Taerwe, L., ‘Degree of hydration based description of mechanical properties of early age concrete’,Mater. Struct. 29 (1996) 335–344.

    Google Scholar 

  12. De Schutter, G. and Taerwe, L., ‘Fracture energy of concrete at early ages’,Mater. Struct. 30 (1997) 67–71.

    Google Scholar 

  13. De Schutter, G. and Taerwe, L., ‘Towards a more fundamental non-linear basic creep model for early age concrete’,Mag. Con. Res. 49 (180) (1997) 195–200.

    Google Scholar 

  14. Ghosh, R. S., ‘Creep of portland cement paste at early ages’,Mater. Struct. 5 (26) (1972) 93–97.

    Google Scholar 

  15. Ghosh, R. S., ‘A hypothesis on mechanism of maturing creep of concrete’,Mater. Struct. 6 (31) (1973) 23–27.

    Google Scholar 

  16. Ghosh, R. S. and Timusk, J., ‘Creep of Portland cement paste at sub-zero temperature’,Mater. Struct. 5 (21) (1971) 171–176.

    Google Scholar 

  17. Khalil, S. M. and Ward, M. A., ‘Effect of degree of hydration upon creep of mortars containing calcium lignosulphonate’,Mag. Con. Res. 29 (98) (1977) 19–25.

    Google Scholar 

  18. Lambotte, H., ‘Le fluage du béton en torsion’,RILEM Bulletin 17 (Dec. 1962) 3–12.

    Google Scholar 

  19. Lokhorst, S. and Van Breugel, K., ‘From microstructural development towards prediction of macro stresses in hardening concrete’, in ‘Thermal Cracking in Concrete at early ages’ (ed. Springenschmid), E & FN Spon, London, 1994, 71–78.

    Google Scholar 

  20. Meyers, B. L. and Slate, F. O., ‘Creep and creep recovery of plain concrete as influenced by moisture conditions and associated variables’,Mag. Con. Res. 22 (70) (1970) 37–41.

    Google Scholar 

  21. Mazars, J. and Bournazel, J.-P., ‘Global modelling for creep, shrinkage and damage processes of maturing concrete’, in ‘Creep and Shrinkage of Concrete’ (eds. Bažant and Carol), E & FN Spon, London, 1993, 369–380.

    Google Scholar 

  22. Neville, A. M., Dilger, W. H. and Brooks, J. J., ‘Creep of plain and structural concrete’, Construction Press, London and New York, 1983.

    Google Scholar 

  23. Ross, A. D., ‘A note on the maturity and creep of concrete’,RILEM Bulletin (March 1959) 55–57.

  24. Rossi, P., Godaert, N., Robert, J. L., Gervais, J. P. and Bruhat, D., ‘Investigation of the basic creep of concrete by acoustic emission’, in ‘Creep and Shrinkage of Concrete’ (eds. Bažant and Carol), E & FN Spon, London, 1993, 33–38.

    Google Scholar 

  25. Rostasy, F. S., Gutsch, A. and Laube, M., ‘Creep and relaxation of concrete at early ages—Experiments and mathematical modeling’, in ‘Creep and Shrinkage of Concrete’ (eds. Bažant and Carol), E & FN Spon, London, 1993, 453–458.

    Google Scholar 

  26. Timusk, J. and Ghosh, R. S., ‘Maturing creep of portland cement paste’,ACI Journal (Dec. 1971) 959–963.

  27. Tschoegl, N. W., ‘The phenomenological theory of linear viscoelastic behaviour’, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  28. Van Breugel, K., ‘Relaxation of young concrete’, Report 5-80-08, Delft University of Technology, 1980.

  29. Van Breugel, K., ‘Development of temperature and properties of concrete as a function of the degree of hydration’, in ‘RILEM Int. Conf. on Concrete of Early Ages’, Editions Anciens ENPC, Volume I, 1982, 179–185.

  30. Yue, L. L., ‘Creep recovery of plain concrete under uniaxial compression’, Dissertation, Magnel Laboratory for Concrete Research, University of Ghent, 1992.

  31. Yue, L. L. and Taerwe, L., ‘Creep recovery of plain concrete and its mathematical modelling’,Mag. Con. Res. 44 (161) (1992) 281–290.

    Article  Google Scholar 

  32. Yue, L. L. and Taerwe, L., ‘Two-function method for the prediction of concrete creep under decreasing stress’,Mater. Struct. 26 (1993) 268–273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. Dr. Ir. Luc Taewe is a RILEM Senior Member. Prof. Dr. Ir. Geert De Schutter is a RILEM Affiliate Member. He participates in the work of RILEM TC EAS: ‘Early age shrinkage induced stresses and cracking in cementitious systems’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Schutter, G., Taerwe, L. Fictitious degree of hydration method for the basic creep of early age concrete. Mat. Struct. 33, 370–380 (2000). https://doi.org/10.1007/BF02479646

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479646

Keywords

Navigation