Skip to main content
Log in

Modeling compressive basic creep of concrete at early age

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Basic creep plays an important role in assessing the risk of early-age cracking in massive structures. In recent decades, several models have been developed to characterize how the hydration process impacts the development of basic creep. This study investigates the basic creep of various concrete mixes across different ages at loading. The analysis focuses on the very early stages (less than 24 hours) and early stages (less than 28 days) of concrete development. It is shown that a logarithmic expression that contains two parameters describing the material can accurately model basic creep from a very early age. One parameter relates to the creep amplitude and depends solely on the composition of the concrete. The other relates to the kinetics of creep and depends on the age of the material at loading and the nature of the concrete mixture. The logarithmic expression corresponds to a rheological model consisting of a single dashpot wherein viscosity exhibits a linear evolution over time. The model offers the advantage of eliminating the need to store the entire stress history for computing the stress resulting from the restriction of the free deformation. This approach significantly reduces computation time. A power-law correlation is also observed between the material aging parameter and the degree of hydration. This relationship depends on the composition. At least two compressive creep tests performed at two different degrees of hydration are needed to calibrate the material parameters and consider the effect of aging on basic creep compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Atrushi, D.S.: Tensile and compressive creep of early age concrete: Testing and modelling Thesis. PhD Thesis, Norwegian University of Sciences and Technology (2003)

  • Azenha, M., Kanavaris, F., Schlicke, D., Jędrzejewska, A., Benboudjema, F., Honorio, T., Šmilauer, V., Serra, C., Forth, J., Riding, K., Khadka, B., Sousa, C., Briffaut, M., Lacarrière, L., Koenders, E., Kanstad, T., Klausen, A., Torrenti, J.-M., Fairbairn, E.M.R.: Recommendations of RILEM TC 287-CCS: thermo-chemo-mechanical modelling of massive concrete structures towards cracking risk assessment. Mater. Struct. 54(4), 135 (2021)

    Google Scholar 

  • Banfill, P.F.G.: Rheology of fresh cement and concrete (1991)

  • Bazant, Z.P.: Creep and shrinkage prediction model for analysis and design of concrete structures - Model B-3. Mater. Struct. 28, 357–365 (1995)

    Google Scholar 

  • Bažant, Z.P., Prasannan, S.: Solidification theory for concrete creep. II: Verification and application. J. Eng. Mech. 115(8), 1704–1725 (1989)

    Google Scholar 

  • Bazant, Z.P., Hauggaard, A., Baweja, S., Ulm, F.-J.: Microprestress-solidification theory for concrete creep. I. Aging and drying effects. J. Eng. Mech. 123, 1188–1194 (1997)

    Google Scholar 

  • Benboudjema, F., Torrenti, J.M.: Early age behaviour of concrete nuclear containments. Nucl. Eng. Des. 238, 2495–2506 (2008)

    Google Scholar 

  • Benboudjema, F., Meftah, F., Torrenti, J.M.: Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng. Struct. 27(2), 239–250 (2005)

    Google Scholar 

  • Benboudjema, F., Briffaut, M., Hilaire, A., Torrenti, J.M., Nahas, G.: Early age behavior of massive concrete structures: from experiments to numerical simulations. In: CONCRACK 3-RILEM-JCI International Workshop on Crack Control Mass Concrete and Related Issues Concerning Early-Age of Concrete Structures, Paris, France, pp. 1–12 (2012)

    Google Scholar 

  • Benboudjema, F., Carette, J., Delsaute, B., Honorio de Faria, T., Knoppik, A., Lacarrière, L., Neiry de Mendonça Lopes, A., Rossi, P., Staquet, S.: Mechanical properties. In: Fairbairn, E.M.R., Cham, M.A. (eds.) Thermal Cracking of Massive Concrete Structures: State of the Art Report of the RILEM Technical Committee 254-CMS, pp. 69–114. Springer, Berlin (2019)

    Google Scholar 

  • Binder, E., Königsberger, M., Díaz Flores, R., Mang, H.A., Hellmich, C., Pichler, B.L.A.: Thermally activated viscoelasticity of cement paste: minute-long creep tests and micromechanical link to molecular properties. Cem. Concr. Res. 163, 107014 (2023)

    Google Scholar 

  • Boulay, C., Staquet, S., Delsaute, B., Carette, J., Crespini, M., Yazoghli-Marzouk, O., Merliot, E., Ramanich, S.: How to monitor the modulus of elasticity of concrete, automatically since the early age? Mater. Struct. (2013)

  • Bourchy, A.: Relation chaleur d’hydratation du ciment: montée en température et contraintes générées au jeune âge du béton. These de l’Universite Paris-Est. (2018)

  • Briffaut, M., Benboudjema, F., Torrenti, J.M., Nahas, G.: Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Eng. Struct. 33(4), 1390–1401 (2011)

    Google Scholar 

  • Briffaut, M., Benboudjema, F., Torrenti, J.-M., Nahas, G.: Concrete early age basic creep: experiments and test of rheological modelling approaches. Constr. Build. Mater. 36, 373–380 (2012)

    Google Scholar 

  • Briffaut, M., Benboudjema, F., Torrenti, J.M., Nahas, G.: Analysis of semi-adiabiatic tests for the prediction of early-age behavior of massive concrete structures. Cem. Concr. Compos. 34(5), 634–641 (2012)

    Google Scholar 

  • CEN: prEN 1992-1-1:2023, Eurocode 2: Design of concrete structures — Part 1-1: General rules — Rules for buildings (2023). Bridges and civil engineering structures

  • Cervera, M., Oliver, J., Prato, T.: Thermo-chemo-mechanical model for concrete. II: Damage and creep. J. Eng. Mech. 125(9), 1028–1039 (1999)

    Google Scholar 

  • Charpin, L., Niepceron, J., Corbin, M., Masson, B., Mathieu, J.-P., Haelewyn, J., Hamon, F., Åhs, M., Aparicio, S., Asali, M., Capra, B., Azenha, M., Bouhjiti, D.E.M., Calonius, K., Chu, M., Herrman, N., Huang, X., Jiménez, S., Mazars, J., Mosayan, M., Nahas, G., Stepan, J., Thenint, T., Torrenti, J.-M.: Ageing and air leakage assessment of a nuclear reactor containment mock-up: VERCORS 2nd benchmark. Nucl. Eng. Des. 377, 111136 (2021)

    Google Scholar 

  • Chidiac, S.E., Mahmoodzadeh, F.: Plastic viscosity of fresh concrete – a critical review of predictions methods. Cem. Concr. Compos. 31(8), 535–544 (2009)

    Google Scholar 

  • Dabarera, A., Li, L., Dao, V.: Experimental evaluation and modelling of early-age basic tensile creep in high-performance concrete. Mater. Struct. 54(3), 130 (2021)

    Google Scholar 

  • De Schutter, G.: Degree of hydration based Kelvin model for the basic creep of early age concrete. Mater. Struct. 32, 260–265 (1999)

    Google Scholar 

  • De Schutter, G., Taerwe, L.: Degree of hydration-based description of mechanical properties of early age concrete. Mater. Struct. 29(190), 335–344 (1996)

    Google Scholar 

  • Delsaute, B., Staquet, S.: Decoupling thermal and autogenous strain of concretes with different water/cement ratios during the hardening process. Adv. Civ. Eng. Mater. 6(2), 1–22 (2017)

    Google Scholar 

  • Delsaute, B., Staquet, S.: Development of strain-induced stresses in early age concrete composed of recycled gravel or sand. J. Adv. Concr. Technol. 17, 319–334 (2019)

    Google Scholar 

  • Delsaute, B., Staquet, S.: Monitoring the viscoelastic behaviour of cement based materials by means of repeated minute-scale-duration loadings. In: Serdar, M., Gabrijel, I., Schlicke, D., Staquet, S., Azenha, M. (eds.) Advanced Techniques for Testing of Cement-Based Materials, pp. 99–134. Springer, Cham (2020a)

    Google Scholar 

  • Delsaute, B., Staquet, S.: Testing concrete since setting time under free and restrained conditions. In: Serdar, M., Gabrijel, I., Schlicke, D., Staquet, S., Azenha, M. (eds.) Advanced Techniques for Testing of Cement-Based Materials, pp. 177–209. Springer, Cham (2020b)

    Google Scholar 

  • Delsaute, B., Boulay, C., Staquet, S.: Creep testing of concrete since setting time by means of permanent and repeated minute-long loadings. Cem. Concr. Compos. 73, 75–88 (2016)

    Google Scholar 

  • Delsaute, B., Torrenti, J.M., Staquet, S.: Monitoring and modeling of the early age properties of the vercors concrete. In: TINCE 2016, Paris, France, p. 12 (2016)

    Google Scholar 

  • Delsaute, B., Torrenti, J.M., Staquet, S.: Modeling basic creep of concrete since setting time. Cem. Concr. Compos. 83(Supplement C), 239–250 (2017)

    Google Scholar 

  • Fairbairn, E.M.R., Azenha, M.: Thermal Cracking of Massive Concrete Structures. Springer, Cham (2019)

    Google Scholar 

  • Frech-Baronet, J., Sorelli, L., Charron, J.P.: New evidences on the effect of the internal relative humidity on the creep and relaxation behaviour of a cement paste by micro-indentation techniques. Cem. Concr. Res. 91, 39–51 (2017)

    Google Scholar 

  • Frech-Baronet, J., Sorelli, L., Chen, Z.: A closer look at the temperature effect on basic creep of cement pastes by microindentation. Constr. Build. Mater. 258, 119455 (2020)

    Google Scholar 

  • Gawin, D., Pesavento, F., Schrefler, B.A.: Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: shrinkage and creep of concrete. Int. J. Numer. Methods Eng. 67(3), 332–363 (2006)

    Google Scholar 

  • Ghasabeh, M., Göktepe, S.: Phase-field modeling of thermal cracking in hardening mass concrete. Eng. Fract. Mech. 289, 109398 (2023)

    Google Scholar 

  • Gutsch, A.W.: Stoffeigenschaften Jungen Betons – Versuche und Modelle (2000)

    Google Scholar 

  • Han, B., Xie, H.-B., Zhu, L., Jiang, P.: Nonlinear model for early age creep of concrete under compression strains. Constr. Build. Mater. 147, 203–211 (2017)

    Google Scholar 

  • Hanson, J.A.: A 10-year study of creep properties of concrete. Report SP-38, Design and Construction Division (1953)

  • Hauggaard, A., Damkilde, L., Hansen, P.F.: Transitional thermal creep of early age concrete. J. Mater. Civ. Eng. 125, 458–465 (1999)

    Google Scholar 

  • Hermerschmidt, W., Budelmann, H.: Creep of Early Age Concrete Under Variable Stress. CONCREEP 10. American Society of Civil Engineers, Reston (2015)

    Google Scholar 

  • Hilaire, A., Benboudjema, F., Darquennes, A., Berthaud, Y., Nahas, G.: Modeling basic creep in concrete at early-age under compressive and tensile loading. Nucl. Eng. Des. 269, 222–230 (2014)

    Google Scholar 

  • Hubler, M.H., Wan-Wendner, R., Bazant, Z.P.: Comprehensive database for concrete creep and shrinkage: analysis and recommendations for testing and recording. ACI Mater. J. 112(4), 547–558 (2015)

    Google Scholar 

  • Irfan-ul-Hassan, M., Pichler, B., Reihsner, R., Hellmich, C.: Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long quasi-static tests. Cem. Concr. Res. 82, 36–49 (2016)

    Google Scholar 

  • Irfan-ul-Hassan, M., Königsberger, M., Reihsner, R., Hellmich, C., Pichler, B.: How water-aggregate interactions affect concrete creep: multiscale analysis. J. Nanomech. Micromech. 7(4), 04017019 (2017)

    Google Scholar 

  • Jiang, C., Yang, Y., Wang, Y., Zhou, Y., Ma, C.: Autogenous shrinkage of high performance concrete containing mineral admixtures under different curing temperatures. Constr. Build. Mater. 61, 260–269 (2014)

    Google Scholar 

  • Khan, I., Castel, A., Gilbert, R.I.: Tensile creep and early-age concrete cracking due to restrained shrinkage. Constr. Build. Mater. 149, 705–715 (2017)

    Google Scholar 

  • Klausen, A.E., Kanstad, T., Bjøntegaard, Ø., Sellevold, E.: Comparison of tensile and compressive creep of fly ash concretes in the hardening phase. Cem. Concr. Res. 95, 188–194 (2017)

    Google Scholar 

  • Klemczak, B., Knoppik-Wróbel, A.: Reinforced concrete tank walls and bridge abutments: early-age behaviour, analytic approaches and numerical models. Eng. Struct. 84, 233–251 (2015)

    Google Scholar 

  • Lacarriere, L., Sellier, A., Souyris, P., Kolani, B., Chhun, P.: Numerical prediction of cracking risk of reinforced concrete structures at early age. RILEM Tech. Lett. 5(0), 41–55 (2020)

    Google Scholar 

  • Lackner, R., Mang, H.A.: Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures. Cem. Concr. Compos. 26(5), 551–562 (2004)

    Google Scholar 

  • Larson, M., Jonasson, J.E.: Linear logarithmic model for concrete creep I. Formulation and evaluation. J. Adv. Concr. Technol. 1(2), 172–187 (2003)

    Google Scholar 

  • Leroy, R., Le Maou, F., Torrenti, J.M.: Long term basic creep behavior of high performance concrete. Data and modelling. Mater. Struct. 50, 85 (2017)

    Google Scholar 

  • Liu, Y., Wei, Y., Ma, L., Wang, L.: Restrained shrinkage behavior of internally-cured UHPC using calcined bauxite aggregate in the ring test and UHPC-concrete composite slab. Cem. Concr. Compos. 134, 104805 (2022)

    Google Scholar 

  • Mallick, S., Anoop, M.B., Rao, K.B.: Early age creep of cement paste-governing mechanisms and role of water-a microindentation study. Cem. Concr. Res. 116, 284–298 (2019)

    Google Scholar 

  • Martin, R.P.: Analyse sur structures modèles des effets mécaniques de la réaction sulfatique interne du béton Thesis (2010). Thèse de l’Université de Paris-Est

  • Mazzotti, C., Savoia, M.: Nonlinear creep damage model for concrete under uniaxial compression. J. Eng. Mech. 129(9), 1065–1075 (2003)

    Google Scholar 

  • Mohammad, R., Rahimi-Aghdam, S., Bažant, Z.P.: Statistical filtering of useful concrete creep data from imperfect laboratory tests. Mater. Struct. 51, 1–14 (2018)

    Google Scholar 

  • Muller, H.S., Anders, I., Breiner, R., Vogel, M.: Concrete: treatment of types and properties in fib Model Code 2010. Struct. Concr. 14, 320–334 (2013)

    Google Scholar 

  • Naqi, A., Delsaute, B., Königsberger, M., Staquet, S.: Monitoring early age elastic and viscoelastic properties of alkali-activated slag mortar by means of repeated minute-long loadings. Dev. Built Environ. 16, 100275 (2023)

    Google Scholar 

  • Østergaard, L., Lange, D.A., Altoubat, S.A., Stang, H.: Tensile basic creep of early-age concrete under constant load. Cem. Concr. Res. 31(12), 1895–1899 (2001)

    Google Scholar 

  • Ranaivomanana, N., Multon, S., Turatsinze, A.: Basic creep of concrete under compression, tension and bending. Constr. Build. Mater. 38(Supplement C), 173–180 (2013)

    Google Scholar 

  • Rasoolinejad, M., Rahimi-Aghdam, S., Bažant, Z.P.: Statistical filtering of useful concrete creep data from imperfect laboratory tests. Mater. Struct. 51(6), 153 (2018)

    Google Scholar 

  • Rossi, P., Tailhan, J.-L., Le Maou, F., Gaillet, L., Martin, E.: Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cem. Concr. Res. 42(1), 61–73 (2012)

    Google Scholar 

  • Rossi, P., Tailhan, J.-L., Le Maou, F.: Comparison of concrete creep in tension and in compression: influence of concrete age at loading and drying conditions. Cem. Concr. Res. 51(Supplement C), 78–84 (2013)

    Google Scholar 

  • Rossi, P., Charron, J.P., Bastien-Masse, M., Tailhan, J.-L., Le Maou, F., Ramanich, S.: Tensile basic creep versus compressive basic creep at early ages: comparison between normal strength concrete and a very high strength fibre reinforced concrete. Mater. Struct. 47(10), 1773–1785 (2014)

    Google Scholar 

  • Saliba, J., Loukili, A., Grondin, F., Regoin, J.P.: Experimental study of creep-damage coupling in concrete by acoustic emission technique. Mater. Struct. 45(9), 1389–1401 (2012)

    Google Scholar 

  • Sellier, A., Multon, S., Buffo-Lacarrière, L., Vidal, T., Bourbon, X., Camps, G.: Concrete creep modelling for structural applications: non-linearity, multi-axiality, hydration, temperature and drying effects. Cem. Concr. Res. 79, 301–315 (2016)

    Google Scholar 

  • Su, X., Jia, M., Wu, Y., Yao, L., Xu, W.: A hierarchical creep model for cement paste: from decoding nano-microscopic CSH creep to considering microstructure evolution. J. Build. Eng. 78, 107606 (2023)

    Google Scholar 

  • Suwanmaneechot, P., Aili, A., Maruyama, I.: Creep behavior of CSH under different drying relative humidities: interpretation of microindentation tests and sorption measurements by multi-scale analysis. Cem. Concr. Res. 132, 106036 (2020)

    Google Scholar 

  • Switek-Rey, A., Denarié, E., Brühwiler, E.: Early age creep and relaxation of UHPFRC under low to high tensile stresses. Cem. Concr. Res. 83, 57–69 (2016)

    Google Scholar 

  • Torrenti, J.M.: Basic creep of concrete-coupling between high stresses and elevated temperatures. Eur. J. Environ. Civ. Eng. 22(12), 1419–1428 (2018)

    Google Scholar 

  • Torrenti, J.-M., Nedjar, B., Aili, A.: Dependence of basic creep on the relative humidity. In: Building for the Future: Durable, Sustainable, Resilient, Springer, Cham (2023)

    Google Scholar 

  • Ulm, F.J., Le Maou, F., Boulay, C.: Creep and shrinkage coupling: new review of some evidence. Revue française de génie civil 3(7), 21–37 (1999)

    Google Scholar 

  • Vandamme, M., Ulm, F.J.: Nanoindentation investigation of creep properties of calcium silicate hydrates. Cem. Concr. Res. 52, 38–52 (2013)

    Google Scholar 

  • Walraven, J., Bigaj-van Vliet, A.: Fib, Model Code for Concrete Structures 2010. Ernst and Son (2013)

    Google Scholar 

  • Wyrzykowski, M., Scrivener, K., Lura, P.: Basic creep of cement paste at early age-the role of cement hydration. Cem. Concr. Res. 116, 191–201 (2019)

    Google Scholar 

  • Zhang, Q., Le Roy, R., Vandamme, M., Zuber, B.: Long-term creep properties of cementitious ma-terials: comparing microindentation testing with macroscopic uniaxial compressive testing. Cem. Concr. Res. 58, 89–98 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.D. and J.M.T. wrote the main manuscript text and B.D. prepared figures. B.N. contributed to the part concerning modelling. A.B. contributed to the part concerning her tests. M.B. contributed to the part concerning his tests. J.M.T and S.T. supervised B.D. work. J.M.T. supervised A.B and M.B. works. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jean Michel Torrenti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delsaute, B., Torrenti, J.M., Nedjar, B. et al. Modeling compressive basic creep of concrete at early age. Mech Time-Depend Mater 28, 143–162 (2024). https://doi.org/10.1007/s11043-024-09668-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-024-09668-6

Keywords

Navigation