Skip to main content
Log in

Matériaux hétérogènes: analyse expérimentale de la localisation et de l’influence de la taille des hétérogénéités sur le comportement en traction

Heterogeneous materials: experimental analysis of localization and the influence of size of the heterogeneities on the behaviour in tension

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Le comportement du béton est fortement guidé par la distribution spatiale des hétérogénéités. L’une des conséquences de cette répartition aléatoire des constituant est la localisation des déformations lors d’essais de traction. Lazone où se localisent les déformations peut être caractérisée par un paramètre, lc appelé longueur caractéristique. Cette étude montre que ce paramètre dépend de la taille des hétérogénéités et peut être, dans le cas des bétons et microbétons, estimé entre quatre et six fois la dimension du plus gros granulat. La dépendance entre la valeur de la contrainte de pic ou l’énergie de rupture et la taille des agrégats a également été retrouvée au cours de ce travail.

Summary

The mechanical behaviour of ordinary concrete depends on the spatial distribution of heterogeneities. One of the direct consequences of this random distribution of its constituents is the localization of deformation (damage) that appears when concrete is subjected to direct tension. The zone in which damage localizes can be characterized by a parameter lc called the characteristic length. This parameters is found to be between four and six times the maximum aggregate grain size in the case of microconcrete and concrete. The correlation between the peak stress or fracture energy and the size of the aggregate is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benaija, E. H., ‘Application de la stéréophotogrammétrie au béton: cas de la compression simple’, thèse de Doctorat de l’ENPC (1992).

  2. Bazant, Z. P. and Pijaudier-Cabot, G., ‘Measurement of the characteristic length of non local continuum’,J. Struct. Eng. 115(4) (1989) 755–767.

    Article  Google Scholar 

  3. Bazant, Z. P., ‘Mechanics of fracture and progressive cracking in concrete structures’, in: ‘Fracture Mechanics of Concrete’, edited by G. C. Sih and A. Ditommaso (Elsevier Applied Science, London, 1985) pp. 1–94.

    Google Scholar 

  4. Hillerborg, A., ‘Numerical method to simulate softening and fracture of concrete’,ibid.‘ pp. 141–170.

    Google Scholar 

  5. Mazars, J., Ramtani, S. and Berthaud, Y., ‘An experimental procedure to delocalize tensile failure and to identify the unilateral effect of distributed damage’, in: ‘Cracking and Damage’, edited by J. Mazars and Z. P. Bazant (Elsevier Applied Science, London, 1988) pp. 55–63.

    Google Scholar 

  6. L’Hermite, R., ‘Present day ideas in concrete technology part 3: the failure of concrete’,RILEM Bul. No. 18 (1954) 27–38.

    Google Scholar 

  7. Grandet, J. et Ollivier, J. P., ‘Etude de la formation du monocarbonate de calcium hydraté au contact d’un granulat calcaire dans une pâte de ciment Portland’,Cement Conc. Res. 10 (1980) 759–770.

    Article  Google Scholar 

  8. Maso, J. C., ‘La liaison pâte-granulat’ ‘Le Béton Hydraulique’ edité par J. C. Maso (Presses de l’ENPC, Paris, 1982) pp. 247–259.

    Google Scholar 

  9. Nomura, N., Mihashi, N. and Izumi, M., ‘Properties of fracture process zone and tension softening behaviour of concrete’, in ‘Practure Processes in Concrete, Rock and London, Ceramics’, Vol. 1 edited by J. G. Van Mier, J. G. Rots and A. Baker (Elsevier Applied Science, London 1991) pp. 441–450.

    Google Scholar 

  10. Van Mier, J. G., ‘Mode I fracture of concrete: discontinuous crack growth and crack interface grain briding’,cement Concr. Res. 21 (1991) 1–15.

    Article  Google Scholar 

  11. Mihashi, H., Nomura, N. and Izumi, M., ‘Size dependence of fracture energy of concrete’, in ‘Fracture Processes in Concrete, Rock and Ceramics’, Vol. 1, edited by J. G. Van Mier, J. G. Rots and A. Baker (Elsevier Applied Science, London, 1991) pp. 441–450.

    Google Scholar 

  12. BPEL 90, ‘Béton Précontraint aux Etats Limites’, règles de calcul à paraître.

  13. Fanella, D., ‘Fracture of concrete in uniaxial and biaxial loading’,J. Engng Mech. 116(11) (1990) 2341–2362.

    Google Scholar 

  14. Fokwa, D., ‘Matériaux hétérogènes: analyse expérimentale et modélisation numérique par une approche hiérarchique’, thèse de Doctorat de l’Université de Paris 6 (1992).

  15. Hordijk, D. A., ‘Deformation controlled uniaxial tensile tests on concrete’, Report No. 25.5.89, 15/VFA (Université Technologique de Delft, Delft, 1989).

    Google Scholar 

  16. Krajcinovic, D. and Fanella, D., ‘A micromechanical damage model for concrete’,Engng Fract. Mech. 25(516) (1986) 585–596.

    Article  Google Scholar 

  17. Luong, M. P., ‘Tensile and shear strength of concrete and rocks’,ibid. Engng Fract. Mech. 35(1–3) 127–137.

  18. Reinhardt, H. W., ‘Various techniques for assessment of damage zone between two saw cuts’, in: ‘Cracking and Damage’, edited by J. Mazars and Z. P. Bazant (Elsevier Applied Science, London, 1988) pp. 3–14.

    Google Scholar 

  19. Shah, S. P., and Maji, A., ‘Experimental observation of cracking and damage’,ibid. ‘ pp. 15–29.

    Google Scholar 

  20. Szczepan, W., ‘Influence of aggregate size on the postipic tensile behaviour of concrete in cyclic tests’, in ‘Brittle Matrix Composites’, Vol. 2, edited by A. M. Brandt and I. H. Marshall, (Elsevier Applied Science, London, 1988) pp. 426–505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fokwa, D., Berthaud, Y. Matériaux hétérogènes: analyse expérimentale de la localisation et de l’influence de la taille des hétérogénéités sur le comportement en traction. Materials and Structures 26, 136–143 (1993). https://doi.org/10.1007/BF02472930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472930

Navigation