Skip to main content

Peridynamics: A Nonlocal Continuum Theory

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VI

Abstract

The peridynamic theory is a nonlocal theory of continuum mechanics based on an integro-differential equation without spatial derivatives, which can be easily applied in the vicinity of cracks, where discontinuities in the displacement field occur. In this paper we give a survey on important analytical and numerical results and applications of the peridynamic theory.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the notation \(\vec{f} =\vec{ f}(\vec{\xi },\vec{\eta })\) is somewhat ambigious. Indeed, for a given function \(\vec{u} =\vec{ u}(\vec{x},t)\) the mathematical correct way to describe \(\vec{f}\) is using the Nemytskii operator \(F :\vec{ u}\mapsto F\vec{u}\) with \((F\vec{u})(\vec{x},\vec{\hat{x}},t) =\vec{ f}(\vec{\hat{x}} -\vec{ x},\vec{u}(\vec{\hat{x}},t) -\vec{ u}(\vec{x},t))\).

  2. 2.

    For the notation \(s = s(\vec{\xi },\vec{\eta })\), see also Footnote 1.

References

  1. A. Agwai, I. Guven, E. Madenci, Peridynamic theory for impact damage prediction and propagation in electronic packages due to drop, in Proceedings of the 58th Electronic Components and Technology Conference, Lake Buena Vista, Florida (2008), pp. 1048–1053

    Google Scholar 

  2. A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171(1), 65–78 (2011)

    Article  Google Scholar 

  3. J.B. Aidun, S.A. Silling, Accurate prediction of dynamic fracture with peridynamics, in Joint US-Russian Conference on Advances in Materials Science, Prague (2009)

    Google Scholar 

  4. B. Alali, R. Lipton, Multiscale dynamics of heterogeneous media in the peridynamic formulation. J. Elast. 106(1), 71–103 (2012)

    Article  MathSciNet  Google Scholar 

  5. B.S. Altan, Uniqueness of initial-boundary value problems in nonlocal elasticity. Int. J. Solid Struct. 25(11), 1271–1278 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. B.S. Altan, Uniqueness in nonlocal thermoelasticity. J. Therm. Stresses 14, 121–128 (1991)

    Article  MathSciNet  Google Scholar 

  7. M. Arndt, M. Griebel, Derivation of higher order gradient continuum models from atomistic models for crystalline solids. Multiscale Model. Simul. 4(2), 531–562 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Askari, J. Xu, S.A. Silling, Peridynamic analysis of damage and failure in composites, in 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA-2006-88 (2006)

    Google Scholar 

  9. Z.P. Bažant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128(11), 1119–1149 (2002)

    Article  Google Scholar 

  10. F. Bobaru, Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofiber networks: a peridynamic approach. Model. Simul. Mater. Sci. 15, 397–417 (2007)

    Article  Google Scholar 

  11. F. Bobaru, Y.D. Ha, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1–2), 229–244 (2010)

    MATH  Google Scholar 

  12. F. Bobaru, H. Jiang, S.A. Silling, Peridynamic fracture and damage modeling of membranes and nanofiber networks, in Proceedings of the XI International Conference on Fracture, Turin, vol. 5748 (2005), pp. 1–6

    Google Scholar 

  13. H. Büsing, Multivariate Integration und Anwendungen in der Peridynamik, Diploma thesis, TU Berlin, Institut für Mathematik, 2008

    Google Scholar 

  14. X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Method Appl. Mech. Eng. 200(9–12), 1237–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Chen, J.D. Lee, A. Eskandarian, Dynamic meshless method applied to nonlocal crack problems. Theor. Appl. Fract. Mech. 38, 293–300 (2002)

    Article  MATH  Google Scholar 

  16. Y. Chen, J.D. Lee, A. Eskandarian, Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solid Struct. 41(8), 2085–2097 (2004)

    Article  MATH  Google Scholar 

  17. Q. Du, K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory. M2AN Math. Mod. Numer. Anal. 45(2), 217–234 (2011)

    Google Scholar 

  18. Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Technical report 2010-8353J, Sandia National Laboratories, 2010

    Google Scholar 

  19. Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. Technical report 2011-3168J, Sandia National Laboratories, 2011. Accepted for publication in SIAM review

    Google Scholar 

  20. Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, Application of a nonlocal vector calculus to the analysis of linear peridynamic materials. Technical report 2011-3870J, Sandia National Laboratories, 2011

    Google Scholar 

  21. Q. Du, J.R. Kamm, R.B. Lehoucq, M.L. Parks, A new approach for a nonlocal, nonlinear conservation law. SIAM J. Appl. Math. 72(1), 464–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Duruk, H.A. Erbay, A. Erkip, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity. Nonlinearity 23, 107–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Emmrich, O. Weckner, The peridynamic equation of motion in non-local elasticity theory, in III European Conference on Computational Mechanics. Solids, Structures and Coupled Problems in Engineering, ed. by C.A. Mota Soares et al. (Springer, Lisbon, 2006)

    Google Scholar 

  24. E. Emmrich, O. Weckner, Analysis and numerical approximation of an integro-differential equation modelling non-local effects in linear elasticity. Math. Mech. Solid 12(4), 363–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Emmrich, O. Weckner, On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5(4), 851–864 (2007)

    MathSciNet  MATH  Google Scholar 

  26. E. Emmrich, O. Weckner, The peridynamic equation and its spatial discretisation. Math. Model. Anal. 12(1), 17–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. H.A. Erbay, A. Erkip, G.M. Muslu, The Cauchy problem for a one dimensional nonlinear elastic peridynamic model. J. Differ. Equ. 252, 4392–4409 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. A.C. Eringen, Vistas of nonlocal continuum physics. Int. J. Eng. Sci. 30(10), 1551–1565 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Gunzburger, R.B. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems. Multscale Model. Simul. 8, 1581–1598 (2010). doi:10.1137/090766607

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Huang, Q. Zhang, P. Qiao, Damage and progressive failure of concrete structures using non-local peridynamic modeling. Sci. China Technol. Sci. 54(3), 591–596 (2011)

    Article  MATH  Google Scholar 

  31. B. Kilic, E. Madenci, Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int. J. Fract. 156(2), 165–177 (2009)

    Article  Google Scholar 

  32. E. Kröner, Elasticity theory of materials with long range cohesive forces. Int. J. Solid Struct. 3, 731–742 (1967)

    Article  MATH  Google Scholar 

  33. I.A. Kunin, Elastic Media with Microstructure, vol. I and II (Springer, Berlin, 1982/1983)

    Google Scholar 

  34. R.B. Lehoucq, M.P. Sears, Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws. Phys. Rev. E 84, 031112 (2011)

    Article  Google Scholar 

  35. Y. Lei, M.I. Friswell, S. Adhikari, A Galerkin method for distributed systems with non-local damping. Int. J. Solid Struct. 43(11–12), 3381–3400 (2006)

    Article  MATH  Google Scholar 

  36. M.L. Parks, R.B. Lehoucq, S.J. Plimpton, S.A. Silling, Implementing peridynamics within a molecular dynamics code. Comput. Phys. Commun. 179(11), 777–783 (2008)

    Article  MATH  Google Scholar 

  37. A.A. Pisano, P. Fuschi, Closed form solution for a nonlocal elastic bar in tension. Int. J. Solid Struct. 40(1), 13–23 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Polizzotto, Nonlocal elasticity and related variational principles. Int. J. Solid Struct. 38(42–43), 7359–7380 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Polizzotto, Unified thermodynamic framework for nonlocal/gradient continuum mechanics. Eur. J. Mech. A Solid 22, 651–668 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Rugola, Nonlocal Theory of Material Media (Springer, Berlin, 1982)

    Google Scholar 

  41. P. Seleson, M.L. Parks, M. Gunzburger, Peridynamic solid mechanics and the embedded atom model. Technical report SAND2010-8547J, Sandia National Laboratories, 2011

    Google Scholar 

  42. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solid 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. S.A. Silling, Peridynamic Modeling of the Kalthoff–Winkler Experiment. Submission for the 2001 Sandia Prize in Computational Science, 2002

    Google Scholar 

  44. S.A. Silling, Linearized theory of peridynamic states. J. Elast. 99, 85–111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  46. S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93(1), 13–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. S.A. Silling, R.B. Lehoucq, Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  49. J. Wang, R.S. Dhaliwal, On some theorems in the nonlocal theory of micropolar elasticity. Int. J. Solid Struct. 30(10), 1331–1338 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Wang, R.S. Dhaliwal, Uniqueness in generalized nonlocal thermoelasticity. J. Therm. Stresses 16, 71–77 (1993)

    Article  MathSciNet  Google Scholar 

  51. K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Stephan Kusche and Henrik Büsing for the numerical simulation of the Kalthoff–Winkler experiment (see Fig. 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Emmrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emmrich, E., Lehoucq, R.B., Puhst, D. (2013). Peridynamics: A Nonlocal Continuum Theory. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VI. Lecture Notes in Computational Science and Engineering, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32979-1_3

Download citation

Publish with us

Policies and ethics