Skip to main content
Log in

Dynamics and bifurcations of two coupled neural oscillators with different connection types

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we present an oscillatory neural network composed of two coupled neural oscillators of the Wilson-Cowan type. Each of the oscillators describes the dynamics of average activities of excitatory and inhibitory populations of neurons. The network serves as a model for several possible network architectures. We study how the type and the strength of the connections between the oscillators affect the dynamics of the neural network. We investigate, separately from each other, four possible connection types (excitatory→excitatory, excitatory→inhibitory, inhibitory→excitatory, and inhibitory→inhibitory) and compute the corresponding bifurcation diagrams. In case of weak connections (small strength), the connection of populations of different types lead to periodicin-phase oscillations, while the connection of populations of the same type lead to periodicanti-phase oscillations. For intermediate connection strengths, the networks can enter quasiperiodic or chaotic regimes, and can also exhibit multistability. More generally, our analysis highlights the great diversity of the response of neural networks to a change of the connection strength, for different connection architectures. In the discussion, we address in particular the problem of information coding in the brain using quasiperiodic and chaotic oscillations. In modeling low levels of information processing, we propose that feature binding should be sought as a temporally coherent phase-locking of neural activity. This phase-locking is provided by one or more interacting convergent zones and does not require a central “top level” subcortical circuit (e.g. the septo-hippocampal system). We build a two layer model to show that although the application of a complex stimulus usually leads to different convergent zones with high frequency oscillations, it is nevertheless possible to synchronize these oscillations at a lower frequency level using envelope oscillations. This is interpreted as a feature binding of a complex stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, L. F. 1990. A network of oscillators.J. Phys. A: Math. & Gen. 23, 3835–3859.

    Article  MATH  Google Scholar 

  • Arnold, V. I. 1983.Geometric Methods in the Theory of Ordinary Differential Equations. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Aronson, D., G. B. Ermentrout and N. Kopell. 1990. Amplitude response of coupled oscillators.Physica D 41, 403–449.

    Article  MathSciNet  MATH  Google Scholar 

  • Baird, B. 1986. Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb.Physica D 22, 150–175.

    Article  MathSciNet  Google Scholar 

  • Borisyuk, R. M. 1991. Interacting neural oscillators can imitate selective attention. InNeurocomputers and Attention. Neurobiology, Synchronization and Chaos, A. V. Holden and V. I. Kryukov (Eds), pp. 189–200. Manchester: Manchester University Press.

    Google Scholar 

  • Borisyuk, R. M. and L. M. Urzhumtseva. 1990. Dynamical regimes in a system of interacting neural oscillators. InNeural Networks—Theory and Architecture, A. V. Holden and V. I. Kryukov (Eds), pp. 9–20. Manchester: Manchester University Press.

    Google Scholar 

  • Borisyuk, R. M. and A. B. Kirillov. 1992. Bifurcation analysis of a neural network model.Biol. Cybern. 66, 319–325.

    Article  MATH  Google Scholar 

  • Borisyuk, R. and G. Borisyuk. 1995. Complex dynamic behavior of oscillatory neural networks: examples and application.Proc. of WCNN'95 (submitted).

  • Borisyuk, G. N., R. M. Borisyuk, A. B. Kirillov, V. I. Kryukov and W. Singer. 1990. Modelling of oscillatory activity of neuron assemblies of the visual cortex. InProc. of Intern. Joint Conf. on Neural Networks—90,2, San-Diego, 431–434.

  • Borisyuk, G. N., R. M. Borisyuk, Ya. B. Kazanovich, T. B. Luzyanina, T. S. Turova and G. S. Cymbalyuk. 1992a. Oscillatory neural networks. Mathematics and applications.Math. Modeling 4, 3–43 (in Russian).

    MATH  Google Scholar 

  • Borisyuk, G. N., R. M. Borisyuk and A. I. Khibnik. 1992b. Analysis of oscillatory regimes of a coupled neural oscillator system with application to visual cortex modeling. InNeural Network Dynamics, J. G. Taylor, E. R. Caianiello, R. M. J. Coterill and J. W. Clark (Eds). Springer Series Perspectives in Neural Computing, pp. 208–226. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Borisyuk, G., R. Borisyuk, Y. Kazanovich and G. Strong. 1994. Modeling the binding problem and attention by synchronization of neural activity. InSPRANN'94 IMACS International Symposium on Signal Processing, Robotics and Neural Networks, Lille, France.

  • Cymbalyuk, G. S., E. V. Nikolaev and R. M. Borisyuk. 1994. In-phase and antiphase self-oscillations in a model of two electrically coupled pacemakers.Biol. Cybern. 71, 153–160.

    Article  MATH  Google Scholar 

  • Damasio, A. R. 1989. The brain binds entities and events by multiregional activation from converges zones.Neural Comput. 1, 123–132.

    Article  Google Scholar 

  • Dmitriev, A. S. 1993. Chaos and information processing in nonlinear dynamical systems.Radiophys. Electronics 38, 1–24 (in Russian).

    MATH  Google Scholar 

  • Eckhorn, R., R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Muk and H. J. Reitboeck. 1988. Coherent oscillations: a mechanism of feature linking in the visual cortex?.Biol. Cybern. 60, 121–130.

    Article  Google Scholar 

  • Ermentrout, G. B. and J. D. Cowan. 1979. Temporal oscillations in neuronal nets.J. Math. Biol. 7, 265–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Ermentrout, G. B. and N. Kopell. 1991. Multiple pulse interactions and averaging in systems of coupled neural oscillators.J. Math. Biol. 29, 195–217.

    Article  MathSciNet  MATH  Google Scholar 

  • Fenichel, N. 1971. Persistence and smoothness of invariant manifolds for flows.Indiana Univ. Math. J. 21, 193–226.

    Article  MathSciNet  MATH  Google Scholar 

  • Finkel, L. H. and G. M. Edelman. 1989. Integration of distributed cortical systems by reentry: A computer simulation of interactive functionally segregated visual areas.J. Neurosci. 9, 3188–3208.

    Google Scholar 

  • Freeman, W. J., 1987. Simulation of chaotic EEG patterns with a dynamical model of the olfactory system.Biol. Cybern. 56, 139–150.

    Article  Google Scholar 

  • Freeman, W. J. 1991. The physiology of perception.Scient. American 2, 34–41.

    Google Scholar 

  • Freeman, W. J., Y. Yao and B. Burke. 1988. Central pattern generating and recording in olfactory bulb: a correlation learning rule.Neural Networks 1, 277–288.

    Article  Google Scholar 

  • Gambaudo, J., P. Glendinning and C. Tresser. 1988. The gluing bifurcation I: symbolic dynamics of the closed curves.Nonlinearity 1, 203–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Gray, C. M., P. König, A. K. Engel and W. Singer. 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.Nature 338, 334–337.

    Article  Google Scholar 

  • Gray, C. M., P. König, A. K. Engel and W. Singer. 1990. Synchronization of oscillatory responses in visual cortex: a plausible mechanism for scene segmentation. InSynergetics of Cognition. H. Haken and M. Stadler (Eds). Springer Series in Synergetics45, pp. 82–98. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Gray, C. M. and W. Singer. 1989. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.Proc. Natl. Acad. Sci. USA 86, 1698–1702.

    Article  Google Scholar 

  • Guckenheimer, J. and Ph. Holmes. 1983.Nonlinear Oscillations Dynamical Systems, and Bifurcations of Vector Fields. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Hansel, D., G. Mato and C. Meunier. 1993. Phase dynamics for weakly coupled Hodgkin-Huxley neurons.Europhys. Lett. 23, 367–372.

    Article  Google Scholar 

  • Hindmarsh, J. L. and R. M. Rose. 1982. A model of the nerve impulse using two first-order differental equations.Nature 296, 162–164.

    Article  Google Scholar 

  • Kawato, M., M. Sokabe and R. Suzuki. 1979. Synergism and antagonism of neurons caused by an electrical synapse.Biol. Cybern. 34, 81–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Kazanovich, Y. B., V. I. Kryukov and T. B. Luzyanina. 1991. Synchronization via phase-locking in oscillatory models of neural networks. InNeurocomputers and Attention. Neurobiology, Synchronization and Chaos, A. V. Holden and V. I. Kryukov (Eds), pp. 269–284. Manchester: Manchester University Press.

    Google Scholar 

  • Kelso, J. A. S., J. P. Scholz and G. Schöner. 1986. Nonequilibrium phase transitions in coordinated biological motion: critical fluctuations.Phys. Lett. A 118, 279–284.

    Article  Google Scholar 

  • Khibnik, A. I. 1990.Using TraX: A Tutorial to Accompany TraX, A Program for Simulation and Analysis of Dynamical Systems. Setauket, New York: Exeter Software.

    Google Scholar 

  • Khibnik, A. I., R. M. Borisyuk and D. Roose. 1992. Numerical bifurcation analysis of a model of coupled neural oscillators. InBifurcation and Symmetry: Cross Influences between Mathematics and Applications, E. L. Allgower, K. Boehmer and M. Golubitsky (Eds), Int. Ser. Numer. Math.104, pp. 215–228. Basel: Birkhauser.

    Chapter  Google Scholar 

  • Khibnik, A. I., Yu. A. Kuznetsov, V. V. Levitin and E. V. Nikolaev. 1993a. Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps.Physica D 62, 360–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Khibnik, A. I., Yu. A. Kuznetsov, V. V. Levitin and E. V. Nikolaev. 1993b.LOCBIF: Interactive LOCal BIFurcation Analyser (version 2). Amsterdam: Computer Algebra Netherlands Expertise Center.

    Google Scholar 

  • König, P. and T. B. Schillen. 1991. Stimulus dependent assembly formation of oscillatory responses: I. Synchronization.Neural Comput. 3, 155–166.

    Article  Google Scholar 

  • Kopell, N. 1988. Toward a theory of modeling central pattern generators. InNeural Control of Rhythmic Movements in Vertebrates, A. H. Cohen, S. Rossignol and S. Grillner (Eds), pp. 369–413. New York: Wiley.

    Google Scholar 

  • Kryukov, V. I. 1991. An attention model based on the principle of dominanta. InNeurocomputers and Attention. Neurobiology, Synchronization and Chaos, A. V. Holden and V. I. Kryukov (Eds), pp. 319–352. Manchester: Manchester University Press.

    Google Scholar 

  • Kryukov, V. I., G. N. Borisyuk, R. M. Borisyuk, A. B. Kirillov and E. L. Kovalenko. 1990. Metastable and unstable states in the brain. InStochastic Cellular Systems: Ergodicity, Memory, Morphogenesis, R. L. Dobrushin, V. I. Kryukov and A. L. Toom (Eds), pp. 225–357. Manchester: Manchester University Press.

    Google Scholar 

  • Levitin, V. V. 1989.TraX: Simulation and Analysis of Dynamical Systems. Setauket, New York: Exeter Software.

    Google Scholar 

  • Li, Z. and J. J. Hopfield. 1989. Modeling the olfactory bulb and its oscillatory processing.Biol Cybern. 61, 379–392.

    Article  MATH  Google Scholar 

  • MacGregor, R. J. 1987.Neural and Brain Modelling. New York: Academic Press.

    Google Scholar 

  • Malkin, I. G. 1956.Some Problems of the Theory of Nonlinear Oscillations. Moscow: Gostehizdat (in Russian).

    MATH  Google Scholar 

  • Malsburg, von der, C. and W. Schneider. 1986. A neural cocktail-party processor.Biol Cybern. 54, 29–40.

    Article  Google Scholar 

  • Miller, R. 1991.Cortico-Hippocampal Interplay. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Nicolis, J. S. 1990.Chaos and Information Processing. A Heuristic Outline. Singapore: World Scientific.

    Google Scholar 

  • Nicolis, J. S. and I. Tsuda. 1985. Chaotic dynamics of information processing—the “magic number seven plus-minus two” revised.Bull. Math. Biol. 47, 343–365.

    MathSciNet  MATH  Google Scholar 

  • Nikolaev, E. V. 1995. Bifurcations of limit cycles of differential equations invariant under involutory symmetry.Matemat. Sbornik. 186, 143–160 (in Russian).

    MathSciNet  Google Scholar 

  • Schillen, T. B. and P. König. 1991. Stimulus dependent assembly formation of oscillatory responses: II. Desynchronization.Neural Comput. 3, 167–177.

    Article  Google Scholar 

  • Schöner, G., W. Y. Jiang and J. A. S. Kelso. 1990. A synergetic theory of quadrupedal gaits and gait transitions.J. Theor. Biol. 142, 359–391.

    Article  Google Scholar 

  • Schutter, E. De, T. W. Simon, J. D. Angstadt and R. L. Calabrese. 1993. Modeling a neural oscillator that paces heartbeat in the medicinal leech.Amer. Zool. 33, 16–28.

    Google Scholar 

  • Shinomoto, S. 1987. A cognitive and associative memory.Biol Cybern. 57, 197–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Shuster, H. G. and P. Wagner. 1990a. A model for neuronal oscillations in the visual cortex. I: Mean-field theory and derivation of phase equations.Biol. Cybern. 64, 77–82.

    Article  Google Scholar 

  • Shuster, H. G. and P. Wagner. 1990b. A model for neuronal oscillations in the visual cortex. II: Phase description of feature dependent synchronization.Biol Cybern. 64, 83.

    Article  Google Scholar 

  • Skeldon, A. C. 1994. Dynamics of parametrically excited double pendulum.Physica D 75, 541–558.

    Article  MathSciNet  MATH  Google Scholar 

  • Sompolinsky, H., D. Golomb and D. Kleinfild. 1990a. Global processing of visual stimuli in a neural network of coupled oscillators.Proc. Natl. Acad. Sci. USA 87, 7200–7204.

    Article  Google Scholar 

  • Sompolinsky, H., D. Golomb and D. Kleinfild. 1990b. Phase coherence and computation in neural network of coupled oscillators. InNon-linear Dynamics and Neuronal Networks, W. Singer and H. G. Schuster (Eds). Weinheim: VCW Verlag.

    Google Scholar 

  • Sompolinsky, H., D. Golomb and D. Kleinfild. 1991. Gooperative dynamics in visual processing.Phys. Rev. A 43, 6990–7011.

    Article  Google Scholar 

  • Sporns, O., J. A. Gally, G. N. Reeke and G. M. Edelman. 1989. Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity.Proc. Natl. Acad. Sci. USA 86, 7265–7269.

    Article  Google Scholar 

  • Tsuda, I. 1992. Dynamic link of memory—chaotic memory map in nonequilibrium neural networks.Neural Networks 5, 313–326.

    Article  MathSciNet  Google Scholar 

  • Vinogradova, O. S., E. S. Brazhnik, V. S. Stafekhina and A. B. Belousoy. 1991. Septohippocampal system. Rhythmic oscillations and information selection. InNeurocomputers and Attention. Neurobiology, Synchronization and Chaos, A. V. Holden and V. I. Kryukov (Eds), pp. 129–148. Manchester: Manchester University Press.

    Google Scholar 

  • Wang, D. L., J. Buhmann and C. von der Malsburg. 1990. Pattern segmentation in associative memory.Neural Comput. 2, 94–106.

    Article  Google Scholar 

  • Wang, X.-J. and J. Rinzel. 1992. Alternating and synchronous rhythms in reciprocally inhibitory model neurons.Neural Comput. 4, 84–97.

    Article  Google Scholar 

  • Wang, X.-J. and J. Rinzel. 1993. Spindle rhythmicity in the reticularis thalami nucleus: sinchronization among mutually inhibitory neurons.Neurosci. 53, 899–904.

    Article  Google Scholar 

  • Wilson, M. A. and J. M. Bower, 1988. A computer simulation of olfactory cortex with functional implications for storage and retrieva of olfactory information. InNeural Inform. Proc. Syst., D. Anderson (Ed.), pp. 114–126. New York: AIP Press.

    Google Scholar 

  • Wilson, H. R. and J. D. Cowan. 1972. Excitatory and inhibitory interactions in localized populations of model neurons.Biophys. J. 12, 1–24.

    Article  Google Scholar 

  • Yao, Y. and W. J. Freeman. 1990. Model of biological pattern recognition with spatially chaotic dynamics.Neural Networks 3, 153–170.

    Article  Google Scholar 

  • Yao, Y., W. J. Freeman, B. Burke and Q. Yang. 1991. Pattern recognition by a distributed neural network: an industrial application.Neural Networks,3, 153–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisyuk, G.N., Borisyuk, R.M., Khibnik, A.I. et al. Dynamics and bifurcations of two coupled neural oscillators with different connection types. Bltn Mathcal Biology 57, 809–840 (1995). https://doi.org/10.1007/BF02458296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458296

Keywords

Navigation