Skip to main content

Advertisement

Log in

Oscillations in a Fully Connected Network of Leaky Integrate-and-Fire Neurons with a Poisson Spiking Mechanism

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Understanding the mechanisms that lead to oscillatory activity in the brain is an ongoing challenge in computational neuroscience. Here, we address this issue by considering a network of excitatory neurons with Poisson spiking mechanism. In the mean-field formalism, the network’s dynamics can be successfully rendered by a nonlinear dynamical system. The stationary state of the system is computed and a perturbation analysis is performed to obtain an analytical characterization for the occurrence of instabilities. Taking into account two parameters of the neural network, namely synaptic coupling and synaptic delay, we obtain numerically the bifurcation line separating the non-oscillatory from the oscillatory regime. Moreover, our approach can be adapted to incorporate multiple interacting populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abia, L.M., Angulo, O., Lopez-Marcos, J.C.: Size-structured population dynamics models and their numerical solutions. Discrete Contin. Dyn. Syst. Ser. B4(4), 1203–1222 (2004)

    MathSciNet  MATH  Google Scholar 

  • Ackleh, A., Deng, K., Wang, X.: Competitive exclusion and coexistence for a quasilinear size-structured population. Math. Biosci. 192, 177–192 (2004)

    MathSciNet  PubMed  MATH  Google Scholar 

  • Arnason, R.: Optimal feeding schedules and harvesting time in aquaculture. Main Resour. Econ. 7, 15–35 (1992)

    MATH  Google Scholar 

  • Baldauf, D., Desimone, R.: Neural mechanisms of object-based attention. Science 44(6182), 424–427 (2014)

    ADS  MATH  Google Scholar 

  • Brittain, J.-S., Brown, P.: Oscillations and the basal ganglia: motor control and beyond. Neuroimage 85, 637–647 (2014)

    PubMed  MATH  Google Scholar 

  • Brown, E., Moehlis, J., Holmes, P.: On phase reductions and response dynamics of neural oscillator populations. Neural Comput. 16, 673–715 (2004)

    PubMed  MATH  Google Scholar 

  • Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000)

    PubMed  CAS  MATH  Google Scholar 

  • Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999)

    PubMed  CAS  MATH  Google Scholar 

  • Brunel, N., Rossum, M.: Lapicque’s 1907 paper: from frogs to integrate-and-fire. Biol. Cybern. 97, 341–349 (2007)

    MathSciNet  MATH  Google Scholar 

  • Buzsaki, G.: Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929 (2004)

    ADS  PubMed  CAS  MATH  Google Scholar 

  • Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1, 7 (2011)

    MathSciNet  PubMed  PubMed Central  MATH  Google Scholar 

  • Caceres, M., Perthame, B., Salort, D., Torres, N.: An elapsed time model for strongly coupled inhibitory and excitatory neural networks. Physica D Nonlinear Phenom. 425, 132977 (2021)

    MathSciNet  MATH  Google Scholar 

  • Carrillo, J.A., González, M.M., Gualdani, M.P., Schonbek, M.E.: Classical solutions for a nonlinear Fokker–Planck equation arising in computational neuroscience. Commun. PDEs 38, 385–409 (2013)

    MathSciNet  MATH  Google Scholar 

  • Chevallier, J., Caceres, M.J., Doumic, M., Reynaud-Bouret, P.: Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25, 2669–2719 (2015)

    MathSciNet  MATH  Google Scholar 

  • Chizhov, A.V.: Conductance-based refractory density model of primary visual cortex. J. Comput. Neurosci. 36, 297–319 (2014)

    MathSciNet  PubMed  MATH  Google Scholar 

  • Chizhov, A.V., Graham, L.J.: Population model of hyppocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. Phys. Rev. E 75, 011924 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • Chizhov, A.V., Graham, L.J.: Efficient evaluations of neuron populations receiving colored-noise current based on refractory density method. Phys. Rev. E 77, 011910 (2008)

    ADS  MATH  Google Scholar 

  • Cormier, Q., Tanré, E., Veltz, R.: Hopf bifurcation in a mean-field model of spiking neurons. Electron. J. Probab. 26, 1–40 (2021)

    MathSciNet  MATH  Google Scholar 

  • Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, K.: The dynamic brain: from spiking neurons to neural masses and cortical fields. PLOS Comput. Biol. 4(8), e1000092 (2008)

    ADS  PubMed  PubMed Central  Google Scholar 

  • Deger, M., Schwalger, T., Naud, R., Gerstner, W.: Fluctuations and information filtering in coupled populations of spiking neurons with adaptation. Phys. Rev. E 90, 062704 (2014)

    ADS  CAS  MATH  Google Scholar 

  • Doumic, M., Marciniak-Czochra, A., Perthame, B., Zubelli, J.P.: A structured population model of cell differentiation. SIAM J. Appl. Math. 71(6), 1918–1940 (2011)

    MathSciNet  MATH  Google Scholar 

  • Dumont, G., Henry, J.: Synchronization of an excitatory integrate-and-fire neural network. Bull. Math. Biol. 75(4), 629–48 (2013)

    MathSciNet  PubMed  MATH  Google Scholar 

  • Dumont, G., Henry, J., Tarniceriu, C.O.: Theoretical connections between neuronal models corresponding to different expressions of noise. J. Theor. Biol. 406, 31–41 (2016)

    ADS  MathSciNet  PubMed  MATH  Google Scholar 

  • Dumont, G., Henry, J., Tarniceriu, C.O.: Noisy threshold in neuronal models: connections with the noisy leaky integrate-and-fire model. J. Math. Biol. 73(6–7), 1413–1436 (2016)

    MathSciNet  PubMed  CAS  MATH  Google Scholar 

  • Dumont, G., Payeur, A., Longtin, A.: A stochastic-field description of finite-size spiking neural networks. PLOS Comput. Biol. 13, e1005691 (2017)

    ADS  PubMed  PubMed Central  MATH  Google Scholar 

  • Dumont, G., Henry, J., Tarniceriu, C.O.: A theoretical connection between the noisy leaky integrate-and-fire and escape rate model: the non-autonomous case. Math. Model. Nat. Phenom. 15, 59 (2020)

    MathSciNet  MATH  Google Scholar 

  • Dumont, G., Pérez-Cervera, A., Gutkin, B.: Adjoint method for macroscopic phase-resetting curves of generalised spiking neural networks. PLOS Comput. Biol. 18(8), e1010363 (2022)

    ADS  PubMed  PubMed Central  CAS  MATH  Google Scholar 

  • Ermentrout, G.B., Kopell, N.: Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Natl. Acad. Sci. 95, 1259–1264 (1998)

    ADS  PubMed  PubMed Central  CAS  MATH  Google Scholar 

  • Ermentrout, G.B., Terman, D.: Mathematical Foundations of Neuroscience. Springer, New York (2010)

    MATH  Google Scholar 

  • Foerster, H.V.: Some remarks on changing populations. In: Kinetics of Cellular Proliferation, pp. 382–399 (1959)

  • Ford, J.M., Mathalon, D.H.: Neural synchrony in schizophrenia. Schizophr. Bull. 34(5), 904–906 (2008)

    PubMed  PubMed Central  MATH  Google Scholar 

  • Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005)

    PubMed  MATH  Google Scholar 

  • Gasca-Leyva, E., Hernández, J.M., Veliov, V.M.: Optimal harvesting time in a size-heterogeneous population. Ecol. Model. 210, 161–168 (2007)

    MATH  Google Scholar 

  • Gast, R., Schmidt, H., Knösche, T.R.: A mean-field description of bursting dynamics in spiking neural networks with short-term adaptation. Neural Comput. 32, 1615–1634 (2020)

    MathSciNet  PubMed  MATH  Google Scholar 

  • Gerstner, W.: Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comput. 12, 43–89 (2000)

    PubMed  CAS  MATH  Google Scholar 

  • Gerstner, W., Hemmen, J.L.: Associative memory in a network of ‘spiking’ neurons. Netw. Comput. Neural Syst. 3(2), 139–164 (1992)

    MATH  Google Scholar 

  • Gong, R., Wegscheider, M., Mühlberg, C., Gast, R., Fricke, C., Rumpf, J.-J., Nikulin, V.V., Knösche, T.R., Classen, J.: Spatiotemporal features of \(\beta \)-\(\gamma \) phase-amplitude coupling in Parkinson’s disease derived from scalp EEG. Brain 144, 487–503 (2021)

    PubMed  Google Scholar 

  • Hammond, C., Bergman, H., Brown, P.: Pathological synchronization in Parkinson’s disease: networks, models and treatment. Trends Neurosci. 30(7), 357–364 (2007)

    PubMed  CAS  MATH  Google Scholar 

  • Herweg, N.A., Solomon, E.A., Kahana, M.J.: Theta oscillations in human memory. Trends Cogn. Sci. 24, 208–227 (2020)

    PubMed  PubMed Central  MATH  Google Scholar 

  • Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  • Karbowski, J., Kopell, N.: Multispikes and synchronization in a large neural network with temporal delays. Neural Comput. 12, 1573–1606 (2000)

    PubMed  CAS  MATH  Google Scholar 

  • Kato, N.: A general model of size-dependent population dynamics with nonlinear growth rate. J. Math. Anal. Appl. 297, 234–256 (2004)

    MathSciNet  MATH  Google Scholar 

  • Kotani, K., Yamaguchi, I., Yoshida, L., Jimbo, Y., Ermentrout, G.B.: Population dynamics of the modified theta model: macroscopic phase reduction and bifurcation analysis link microscopic neuronal interactions to macroscopic gamma oscillation. J. R. Soc. Interface. 11(95), 20140058 (2014)

    PubMed  PubMed Central  MATH  Google Scholar 

  • Lindner, B., Doiron, B., Longtin, A.: Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E 72, 061919 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Liu, J., Wang, X.-S.: Numerical optimal control of a size-structured PDE model for metastatic cancer treatment. Math. Biosci. (2019). https://doi.org/10.1016/j.mbs.2019.06.001

    Article  MathSciNet  PubMed  MATH  Google Scholar 

  • Longtin, A.: Neuronal noise. Scholarpedia 8(9), 1618 (2013)

    ADS  MATH  Google Scholar 

  • Meyer, C., Vreeswijk, C.: Temporal correlations in stochastic networks of spiking neurons. Neural Comput. 14, 369–404 (2002)

    PubMed  MATH  Google Scholar 

  • Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pure Appl. 48, 1235–1260 (2005)

    MathSciNet  MATH  Google Scholar 

  • Milton, J., Jung, P. (eds.): Epilepsy as a Dynamic Disease. Biological and Medical Physics series. Springer, Berlin (2003)

    MATH  Google Scholar 

  • Newhall, K.A., Kovacic, G., Kramer, P.R., Cai, D.: Cascade-induced synchrony in stochastically-driven neuronal networks. Phys. Rev. E 82, 041903 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  • Newhall, K.A., Kovacic, G., Kramer, P.R., Zhou, D., Rangan, A.V., Cai, D.: Dynamics of current-based, poisson driven, integrate-and-fire neuronal networks. Commun. Math. Sci. 8, 541–600 (2010)

    MathSciNet  MATH  Google Scholar 

  • Ostojic, S., Brunel, N., Hakim, V.: Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J. Comput. Neurosci. 26, 369–392 (2009)

    MathSciNet  PubMed  MATH  Google Scholar 

  • Pakdaman, K., Perthame, B., Salort, D.: Dynamics of a structured neuron population. Nonlinearity 23, 23–55 (2009)

    MathSciNet  MATH  Google Scholar 

  • Pakdaman, K., Perthame, B., Salort, D.: Relaxation and self-sustained oscillations in the time elapsed neuron network model. J. SIAM Appl. Math. 73(3), 1260–1279 (2013)

    MathSciNet  MATH  Google Scholar 

  • Pietras, B., Devalle, F., Roxin, A., Daffertshofer, A., Montbrió, E.: Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks. Phys. Rev. E 100, 042412 (2019)

    ADS  PubMed  CAS  MATH  Google Scholar 

  • Pietras, B., Gallice, N., Schwalger, T.: Low-dimensional firing-rate dynamics for populations of renewal-type spiking neurons. Phys. Rev. E 102, 022407 (2020)

    ADS  MathSciNet  PubMed  CAS  MATH  Google Scholar 

  • Ratas, I., Pyragas, K.: Noise-induced macroscopic oscillations in a network of synaptically coupled quadratic integrate-and-fire neurons. Phys. Rev. E 100, 052211 (2019)

    ADS  PubMed  CAS  MATH  Google Scholar 

  • Reed, W.J., Clarke, H.R.: harvest decisions and asset valuation for biological resources exhibiting size-dependent stochastic growth. Int. Econ. Rev. 31, 147–169 (1990)

    MathSciNet  MATH  Google Scholar 

  • Rich, S., Hutt, A., Skinner, F.K., Valiante, T.A., Lefebvre, J.: Neurostimulation stabilizes spiking neural networks by disrupting seizure-like oscillatory transitions. Sci. Rep. 10, 15408 (2020)

    ADS  PubMed  PubMed Central  Google Scholar 

  • Schmutz, V., Löcherbach, E., Schwalger, T.: On a finite-size neuronal population equation. SIAM J. Appl. Dyn. Syst. 22(2), 996–1029 (2023)

    MathSciNet  MATH  Google Scholar 

  • Schwalger, T.: Mapping input noise to escape noise in integrate-and-fire neurons: a level crossing approach. Biol. Cybern. 115, 539–562 (2021)

    PubMed  PubMed Central  MATH  Google Scholar 

  • Schwalger, T., Chizhov, A.V.: Mind the last spike—firing rate models for mesoscopic populations of spiking neurons. Curr. Opin. Neurobiol. 58, 155–166 (2019)

    PubMed  CAS  MATH  Google Scholar 

  • Schwalger, T., Deger, M., Gerstner, W.: Towards a theory of cortical columns: from spiking neurons to interacting neural populations of finite size. PLOS Comput. Biol. 13, e1005507 (2017)

    ADS  PubMed  PubMed Central  MATH  Google Scholar 

  • Sinko, J.W., Streifer, W.: A new model for age-size structure of a population. Ecology 48, 910–918 (1967)

    MATH  Google Scholar 

  • Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  • Swadlow, H.A., Waxman, S.G.: Axonal conduction delays. Scholarpedia 7, 1451 (2012)

    ADS  Google Scholar 

  • Tarniceriu, O.C., Veliov, V.: Optimal control of a class of size-structured systems. Large Scale Sci. Comput. 4818, 366–373 (2009)

    MathSciNet  MATH  Google Scholar 

  • Torres, N.B., Perthame, D.S.: A multiple time renewal equation for neural assemblies with elapsed time model. Nonlinearity 35(10), 5051 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  • Whittington, M.A., Cunningham, M.O., LeBeau, F.E.N., Racca, C., Traub, R.D.: Multiple origins of the cortical gamma rhythm. Dev. Neurobiol. 71(1), 92–106 (2010)

    Google Scholar 

  • Winfree, A.T.: The Geometry of Biological Time. Springer, New York (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Oana Tarniceriu.

Additional information

Communicated by Kyle Wedgwood.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (zip 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumont, G., Henry, J. & Tarniceriu, C.O. Oscillations in a Fully Connected Network of Leaky Integrate-and-Fire Neurons with a Poisson Spiking Mechanism. J Nonlinear Sci 34, 18 (2024). https://doi.org/10.1007/s00332-023-09995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09995-x

Keywords

Mathematics Subject Classification

Navigation