Skip to main content
Log in

Continuum approach to phonon gas and shape changes of second sound via shock waves theory

  • Published:
Il Nuovo Cimento D

Summary

A continuum approach, based on the principles of modern extended thermodynamics, describing the model of a phonon gas is performed. The main difference with the ideal phonon gas theory consists in the presence of athermal inertia. We apply the shock wave theory and discuss the selection rules for physical shocks (theLax conditions and theentropy growth). In this way the existence of two new kinds of shocks (hot andcold shocks) in rigid heat conductors at low temperature is pointed out. In particular a critical temperature, characteristic of each material, changing the structure of the previous types of shocks is analytically deduced. This characteristic temperature permits also to explain the modification of the received second sound wave form with respect to the initial wave profile. Finally, the results are applied to the case of high-purity crystals (NaF, Bi,3He and4He) and compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Peshkov:J. Phys. USSR,8, 381 (1944).

    Google Scholar 

  2. L. Landau:J. Phys. USSR,5, 71 (1941).

    Google Scholar 

  3. V. Peshkov: inReport on an International Conference on Fundamental Particles and Low Temperature Physics, Vol. II (The Physical Society of London, 1947), p. 19.

  4. C. C. Ackerman, B. Bertman, H. A. Fairbank andR. A. Guyer:Phys. Rev. Lett.,16, 789 (1966).

    Article  ADS  Google Scholar 

  5. C. C. Ackerman andW. C. Overton jr.:Phys. Rev. Lett.,22, 764 (1969).

    Article  ADS  Google Scholar 

  6. H. E. Jackson, C. T. Walker andT. F. McNelly:Phys. Rev. Lett.,25, 26 (1970)

    Article  ADS  Google Scholar 

  7. V. Narayanamurti andR. C. Dynes:Phys. Rev. Lett.,28, 1461 (1972).

    Article  ADS  Google Scholar 

  8. R. A. Guyer andJ. A. Krumhansl:Phys. Rev. Lett.,148, 766, 778 (1966).

    ADS  Google Scholar 

  9. C. Cattaneo:Atti Sem. Mat. Fis. Univ. Modena,3, 83 (1948).

    MathSciNet  Google Scholar 

  10. This velocity remains still valid when the non-linear terms are taken into account.

  11. W. Larecki andS. Piekarski:Nuovo Cimento D,13, 31 (1991);W. Larecki:Nuovo Cimento D,14, 141 (1992).

    Google Scholar 

  12. G. M. Kremer andI. Müller:J. Math. Phys.,33, 2265 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. T. Ruggeri, A. Muracchini andL. Seccia:Phys. Rev. Lett,64, 2640 (1990);T. Ruggeri:Mod. Phys. Lett. B,4, 945 (1990).

    Article  ADS  Google Scholar 

  14. I-Shih Liu andI. Müller:Arch. Rat. Mech. Anal.,83, 285 (1983);I-Shih Liu, I. Müller andT. Ruggeri:Ann. Phys.,169, 191 (1986);I. Müller:Thermodynamics (Pitman, Boston, Mass., 1985);I. Müller andT. Ruggeri (Editors):Kinetic Theory and Extended Thermodynamics (Pitagora, Bologna, 1987);I. Müller andT. Ruggeri:Extended Thermodynamics, Springer Tracts on Natural Philosophy., Vol.37 (Springer-Verlag, New York, N.Y., 1993).

    Article  MATH  Google Scholar 

  15. T. Ruggeri:Boll. Un. Mat. Ital. Suppl., Fisica Matematica,4, 261 (1985);Rend. Sem. Mat. Univ. Torino, Hyperbolic Equations, 167 (1987) (special issue);A. Morro andT. Ruggeri:Int. J. Non-Linear Mech.,22, 27 (1987).

    MathSciNet  Google Scholar 

  16. A. Morro andT. Ruggeri:J. Phys. C,21, 1743 (1988).

    Article  ADS  Google Scholar 

  17. T. Ruggeri andA. Strumia:Ann. Inst. H. Poincaré,34, 65 (1981).

    MATH  MathSciNet  Google Scholar 

  18. T. Ruggeri:Continuum Mech. Thermodyn.,1, 3 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  19. B. D. Coleman, M. Fabrizio andD. R. Owen:Arch. Rat. Mech. Anal.,80, 135 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  20. P. D. Lax:Comm. Pure Appl. Math.,10, 537 (1957).

    MATH  MathSciNet  Google Scholar 

  21. In terms of unperturbed and perturbed Mach numbers (M r=s/λr andM l=s/λv, respectively) the Lax conditions are equivalent to the well-known conditions, arising in fluid dynamics, that the shock is supersonic on one side (M r>1), and subsonic on the other one (M l<1).

  22. Of course it is possible to have cases in which\(\bar \mu \to \infty \). In this circumstance we do not have other bifurcations points except the pointA (e.g., the fluid dynamics).

  23. P. D. Lax:Contributions to the Theory of Partial Differential Equations (Princeton University Press, Princeton, N.J., 1954);G. Boillat:La propagation des ondes (Gauthier-Villars, Paris, 1965);G. Boillat andT. Ruggeri:Boll. Un. Mat. Ital. A,15, 197 (1978).

    Google Scholar 

  24. The Lax conditions play several roles in non-linear wave propagation; in particular, for the causality in the impact between a discontinuity wave and a shock wave see,e.g.,G. Boillat andT. Ruggeri:Proc. R. Soc. Edinburgh A,83, 17 (1979);L. Brun: inMechanical Waves in Solids, edited byJ. Mandel andL. Brun (Springer, Wien, 1975).

    MATH  MathSciNet  ADS  Google Scholar 

  25. A. Jeffrey:Quasilinear Hyperbolic Systems and Waves (Pitman, London, 1976).

    Google Scholar 

  26. P. D. Lax: inContribution to Non Linear Functional Analysis, edited byE. H. Zarantonello (Academic Press, New York, N.Y., 1971);G. Boillat:C.R. Acad. Sci. Paris A,283, 409 (1976).

    Google Scholar 

  27. A discussion of the selection rules and, more in general, of the questions related to the Riemann problem can be seen inC. Dafermos:Arch. Rat. Mech. Anal.,107, 127 (1989) and in the references therein quoted.

    Article  MATH  MathSciNet  Google Scholar 

  28. B. D. Coleman andD. C. Newman:Phys. Rev. B,37, 1492 (1988). The same general features of shock propagation are obtained if we use only the experimental values or a different interpolation function.

    Article  ADS  Google Scholar 

  29. It does not seem easy to verify that this property remains valid also in the general theory of shock waves.

  30. W. Narayanamurti andR. C. Dynes:Proceedings of the XIV International Conference on Low Temperature Physics, Vol.1 (North-Holland, New York, N.Y., 1976), p. 499.

    Google Scholar 

  31. C. C. Ackerman andR. A. Guyer:Ann. Phys.,50, 128 (1968).

    Article  ADS  Google Scholar 

  32. I-Shih Liu:Arch. Rat. Mech. Anal.,46, 131 (1972).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggeri, T., Muracchini, A. & Seccia, L. Continuum approach to phonon gas and shape changes of second sound via shock waves theory. Il Nuovo Cimento D 16, 15–44 (1994). https://doi.org/10.1007/BF02452000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02452000

PACS 44.10

PACS 66.70

Navigation