Skip to main content

Introduction to Acoustics of Phononic Crystals. Homogenization at Low Frequencies

  • Chapter
Phononic Crystals

Abstract

A short introduction to propagation of sound in phononic crystals is given. Special emphasis is put to the description of the properties of phononic crystals in the long-wavelength limit when periodic inhomogeneous medium can be replaced by a homogeneous one with effective parameters (speed of sound, elastic modulus, and mass density). Two approaches to calculate these effective parameters are given: the plane-wave method and the multiple-scattering method. Metafluid with anisotropic mass density is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  Google Scholar 

  3. E. Yablonovitch, T.G. Gmitter, K.M. Leung, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)

    Article  Google Scholar 

  4. M. Sigalas, E.N. Economou, Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993)

    Article  Google Scholar 

  5. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  Google Scholar 

  6. R. Martínez-Sala, J. Sancho, J.V. Sánchez, V. Gómez, J. Llinarez, F. Meseguer, Sound attenuation by sculpture. Nature 378, 241 (1995)

    Article  Google Scholar 

  7. M.S. Kushwaha, Stop-bands for periodic metallic rods: sculptures that can filter the noise. Appl. Phys. Lett. 70, 3218–3220 (1997)

    Article  Google Scholar 

  8. M.F. de Espinosa, E. Jiménez, M. Torres, Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208 (1998)

    Article  Google Scholar 

  9. J.V. Sánchez-Pérez, D. Caballero, R. Mártinez-Sala, C. Rubio, J. Sánchez-Dehesa, F. Meseguer, J. Llinares, F. Gálvez, Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325–5328 (1998)

    Article  Google Scholar 

  10. M.S. Kushwaha, Classical band structure of periodic elastic composites. Int. J. Mod. Phys. B 10, 977–1094 (1996)

    Article  Google Scholar 

  11. R.H. Olsson III, I. El-Kady, Microfabricated phononic crystal devices and applications. Meas Sci Technol. 20, 012002–012015 (2009)

    Article  Google Scholar 

  12. L.D. Landau, E.M. Lifshitz, A.M. Kosevich, L.P. Pitaevskii, Theory of Elasticity (Pergamon Press, Oxford, 1986)

    Google Scholar 

  13. C.G. Poulton, A.B. Movchan, R.C. McPhedran, N.A. Nocorovici, Y.A. Antipov, Eigenvalue problems for doubly periodic structures and phononic band gaps. Proc. R. Soc. A 457, 2561–2568 (2000)

    Google Scholar 

  14. J.O. Vasseur, P.A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, D. Prevost, Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001)

    Article  Google Scholar 

  15. S.M. Rytov, Acoustic properties of a thinly laminated medium. Sov. Phys. Acoust. 2, 68 (1956)

    Google Scholar 

  16. S. Nemat-Nasser, M. Yamada, Harmonic waves in layered transversely isotropic composites. J. Sound Vibrat. 79, 161 (1981)

    Article  MATH  Google Scholar 

  17. R.E. Camley, B. Djafari-Rouhani, L. Dobrzynski, A.A. Maradudin, Transverse elastic waves in periodically layered infinite and semi-infinite media. Phys. Rev. B 27, 7329 (1983)

    Google Scholar 

  18. D. Djafari-Rouhani, L. Dobrzynski, Simple excitations in N-layered superlattices. Solid State Commun. 62, 609 (1987)

    Article  Google Scholar 

  19. M. Grimsditch, Effective elastic constants of superlattices. Phys. Rev. B 31, 6818 (1985)

    Article  Google Scholar 

  20. S. Nemat-Nasser, J.R. Willis, A. Srivastava, A.V. Amirkhizi, Homogenization of periodic composites and locally resonant sonic materials. Phys. Rev. B 83, 104103 (2011)

    Article  Google Scholar 

  21. A.A. Krokhin, J. Arriaga, L.N. Gumen, Speed of sound in periodic elastic composites. Phys. Rev. Lett. 91, 264302 (2003)

    Article  Google Scholar 

  22. Q. Ni, J. Cheng, Anisotropy of effective velocity for elastic wave propagation in two-dimensional phononic crystals at low frequencies. Phys. Rev. B 72, 014305 (2005)

    Article  Google Scholar 

  23. A.W. Wood, Textbook of Sound (Macmillan, New York, 1941)

    Google Scholar 

  24. M. Kafesaki, R.S. Penciu, E.N. Economou, Air bubbles in water: a strongly multiple scattering medium for acoustic waves. Phys. Rev. Lett. 84, 6050 (2000)

    Article  Google Scholar 

  25. M. Kafesaki, E.N. Economou, Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys. Rev. B 60, 11993 (1999)

    Article  Google Scholar 

  26. A.A. Ruffa, Acoustic wave propagation through periodic bubbly liquids. J. Acoust. Soc. Am. 91, 1 (1992)

    Article  Google Scholar 

  27. D. Bai, J.B. Keller, Sound waves in a periodic medium containing rigid spheres. J. Acoust. Soc. Am. 82, 1436 (1987)

    Article  Google Scholar 

  28. F. Cervera, L. Sanchis, J.V. Sánchez-Pérez, R. Martínez-Sala, C. Rubio, F. Meseguer, C. López, D. Caballero, J. Sánchez-Dehesa, Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902 (2002)

    Article  Google Scholar 

  29. B.C. Gupta, Z. Ye, Theoretical analysis of the focusing of acoustic waves by two-dimensional sonic crystals. Phys. Rev. E 67, 036603 (2003)

    Article  Google Scholar 

  30. E. Meyer, E.G. Neumann, Physical and Applied Acoustics (Academic Press, New York, 1972)

    Google Scholar 

  31. A. Bensoussan, J.-L. Lions, G. Papanicolau, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978)

    MATH  Google Scholar 

  32. N.S. Bakhvalov, G.P. Panasenko, Homogenization. Averaging Process in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials (Kluwer, New York, 1989)

    Google Scholar 

  33. W.S. Ament, Sound propagation in gross mixtures. J. Acoust. Soc. Am. 25, 638–641 (1953)

    Article  Google Scholar 

  34. J.G. Berryman, Long-wavelength propagation in composite elastic media I. Spherical inclusions. J. Acoust. Soc. Am. 68, 1809–1819 (1980)

    Article  MATH  Google Scholar 

  35. J. Mei, Z. Liu, W. Wen, P. Sheng, Effective mass density of fluid-solid composites. Phys. Rev. Lett. 96, 024301 (2006)

    Article  Google Scholar 

  36. D. Torrent, A. Hakansson, F. Cervera, J. Sánchez-Dehesa, Homogenization of two-dimensional clusters of rigid rods in air. Phys. Rev. Lett. 96, 204302 (2006)

    Article  Google Scholar 

  37. D. Torrent, J. Sánchez-Dehesa, Effective parameters of clusters of cylinders embedded in a non-viscous fluid or gas. Phys. Rev. B 74, 224305 (2006)

    Article  Google Scholar 

  38. D. Torrent, J. Sánchez-Dehesa, F. Cervera, Evidence of two-dimensional magic clusters in the scattering of sound. Phys. Rev. B (RC) 75, 241404 (2006)

    Article  Google Scholar 

  39. D. Torrent, J. Sánchez-Dehesa, Anisotropic mass density by two-dimensional acoustic metamaterials. New J. Phys. 10, 023004 (2008)

    Article  Google Scholar 

  40. D. Torrent, J. Sánchez-Dehesa, Acoustic metamaterial for new two-dimensional sonic devices. New J. Phys. 9, 323 (2007)

    Article  MATH  Google Scholar 

  41. A. Climente, D. Torrent, J. Sánchez-Dehesa, Sound focusing by gradient index sonic lenses. Appl. Phys. Lett. 97, 104103 (2010)

    Article  Google Scholar 

  42. T.P. Martin, M. Nicholas, G. Orris, L.W. Cai, D. Torrent, J. Sánchez-Dehesa, Sonic gradient index lens for aqueous applications. Appl. Phys. Lett. 97, 113503 (2010)

    Article  Google Scholar 

  43. L. Zigoneanu, B.-I. Popa, S.A. Cummer, Design and measurements of a broadband two-dimensional acoustic lens. Phys. Rev. B 84, 024305 (2011)

    Article  Google Scholar 

  44. L. Zigoneanu, B.-I. Popa, A.F. Starr, S.A. Cummer, Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density. J. Appl. Phys. 109, 054906 (2011)

    Article  Google Scholar 

  45. L.N. Gumen, J. Arriaga, A.A. Krokhin, Metafluid with anisotropic dynamic mass. Low Temp. Phys. 37, 1221–1224 (2011)

    Article  Google Scholar 

  46. J. Li, L. Fok, X. Yin, G. Bartal, X. Zhang, Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931–934 (2009)

    Article  Google Scholar 

  47. S.A. Cummer, D. Schurig, One path to acoustic cloaking. New J. Phys. 9, 45 (2007)

    Article  Google Scholar 

  48. D. Torrent, J. Sánchez-Dehesa, Radial wave crystals: Radially periodic structures from metamaterials for engineering acoustic or electromagnetic waves. Phys. Rev. Lett. 103, 064301 (2009).

    Google Scholar 

  49. D. Torrent, J. Sánchez-Dehesa, Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New J. Phys. 13, 093018 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

JSD acknowledges useful discussions with D. Torrent and the support from the ONR (USA) grant N00014-12-1-0216, and the MINECO (Spain) grants #TEC2010-19751 and #CSD2008-66 (CONSOLIDER program). AAK acknowledges support from the DOE grant # DE-FG02-06ER46312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Sánchez-Dehesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sánchez-Dehesa, J., Krokhin, A. (2016). Introduction to Acoustics of Phononic Crystals. Homogenization at Low Frequencies. In: Khelif, A., Adibi, A. (eds) Phononic Crystals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9393-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9393-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9392-1

  • Online ISBN: 978-1-4614-9393-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics