Skip to main content
Log in

Single-fibre laser Doppler flowmetry

A method for deep tissue perfusion measurements

  • Instrumentation
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A laser Doppler flowmeter with one optical fibre guiding light to and from the tissue under study has been developed. The outer diameter of the probe equals the optical fibre diameter (0·5 mm). The small size makes it useful for studying the deep tissue perfusion in organs. Differential-channel operation was compared with the single-channel operation and the benefit of this technique was evaluated theoretically as well as in a fluid model resembling tissue perfusion. The signal-to-noise improvement ratio was calculated and found to be related to the number of coherence areas detected and to the broadband noise of the laser. In vivo experiments in the gastrocnemius muscle of the pig were performed to compare the results from the single-fibre technique with those of the electromagnetic flowmeter. Linear regression analysis of femoral blood flow data obtained with the electromagnetic flowmeter and local muscle blood flow measured with the single-fibre technique showed a correlation coefficient of 0·88 (n=36, p<0·001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, T., Heisey, S. R., Smith, M. C., Steinmetz, M. A., Hartman, J. C. andFry, H. K. (1980) Thermodynamic technique for the quantification of regional blood flow.Am. J. Physiol.,238, H682-H696.

    Google Scholar 

  • Adams, T., Spielman, W. S., Holmes, K. R., Heisey, S. R. andChen, M. M. (1985) Proposed methods for the measurement of regional renal blood flow using heat transfer analysis.Ann. Biomed. Eng.,13, 237–258.

    Google Scholar 

  • Barcroft, H., Bock, K. D., Hensel, H. undKitchin, A. H. (1955) Die Muskeldurchblutung des Menschen bei indirekter Erwärmung und Abkühlung.Pflügers Arch. ges. Physiol.,261, 199–210.

    Article  Google Scholar 

  • Berne, B. J. andPecora, R. (1979) The light-scattering experiment. InDynamic light scattering. John Wiley & Sons Inc., New York, 38–52.

    Google Scholar 

  • Bonner, R. andNossal, R. (1981) Model for laser Doppler measurements of blood flow in tissue.Appl. Optics,20, 2097–2107.

    Google Scholar 

  • Cummins, H. Z. andSwinney, H. L. (1970) Light beating spectroscopy. InProgress in optics.Wolf, E. (Ed.), North-Holland, Amsterdam, The Netherlands, Vol. 8, 133–200.

    Google Scholar 

  • Damber, J.-E., Lindahl, O., Selstam, G. andTenland, T. (1983) Rhythmical oscillations in rat testicular microcirculation as recorded by laser Doppler flowmetry.Acta Physiol. Scand.,118, 117–123.

    Google Scholar 

  • Dyott, R. B. (1978) The fibre-optic Doppler anemometer.Microwaves, Optics & Acoustics,2, 13–18.

    Google Scholar 

  • Fagrell, B. (1984)Microcirculation of the skin. InThe physiology and pharmacology of the microcirculation.Mortillaro, N. A. (Ed.), Academic Press Inc., Vol. 2, 133–180.

  • Grängsjö, G., Sandblom, J., Ulfendahl, H. R. andWolgast, M. (1966) Theory of the heated thermocouple principle.Acta Physiol. Scand.,66, 366–373.

    Google Scholar 

  • Grant, R. T. (1938) Observations on the blood circulation in voluntary muscle in man.Clin. Sci.,3, 157–173.

    Google Scholar 

  • Grayson, J. (1958) The application of internal calotimetry to the measurement of liver blood flow responses. InLiverfunction.Brauer, R. W. (Ed.), Am. Inst. Biol. Sci., Washington DC, 106–112.

    Google Scholar 

  • Hensel, H. undBender, F. (1956) Fortlaufende Bestimmung der Hautdurchblutung am Menschen mit einem elektrischen Wärmeleitmesser.Pflügers Arch. ges. Physiol.,263, 603–614.

    Article  Google Scholar 

  • Heymann, M. A., Payne, B. D., Hoffman, J. I. E. andRudolph, A. M. (1977) Blood flow measurements with radionuclide-labeled particles.Progr. Cardiovasc. Dis.,20, 55–79.

    Google Scholar 

  • Holloway, G. A. Jr. (1980) Cutaneous blood flow responses to injection trauma measured by laser Doppler velocimetry.J. Invest. Dermatol.,74, 1–4.

    Article  Google Scholar 

  • Holti, G. andMitchell, K. W. (1978) Estimation of the nutrient skin blood flow using a segmented thermal clearance probe.Clin. Exp. Dermatol.,3, 189–198.

    Article  Google Scholar 

  • Ivanov, K. P., Kalinina, M. K. andLevkovich, Yu. I. (1985) Microcirculation velocity changes under hypoxia in brain, muscles, liver, and their physiological significance.Microvasc. Res.,30, 10–18.

    Article  Google Scholar 

  • Kajiya, F., Hoki, N., Tomonaga, G. andNishihara, H. (1981) A laser-Doppler velocimeter using an optical fiber and its application to local velocity measurement in the coronary artery.Experientia,37, 1171–1173.

    Article  Google Scholar 

  • Kajiya, F., Tomonaga, G., Tsujioka, K., Ogasawara, Y. andNishihara, H. (1985) Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method.J. Biomech. Eng.,107, 10–15.

    Article  Google Scholar 

  • Kilpatrick, D., Tyberg, J. V. andParmley, W. W. (1982) Blood velocity measurement by fiber optic laser Doppler anemometry.IEEE Trans., BME-29, 142–145.

    Google Scholar 

  • Kramer, K. undQuensel, W. (1937) Untersuchungen über den Muskelstoffwechsel des Warmblüters. I. Mitteilung. Der Verlauf der Muskeldurchblutung während der tetanischen Kontraktion.Pflügers Arch. ges. Physiol.,239, 620–643.

    Article  Google Scholar 

  • Lassen, N. A., Lindbjerg, J. andMunck, O. (1964) Measurement of blood-flow through skeletal muscle by intramuscular injection of Xenon-133.Lancet,1, 686–689.

    Article  Google Scholar 

  • Lindbom, L. (1983) Microvascular blood flow distribution in skeletal muscle. An intravital microscopic study in the rabbit. Thesis.Acta Physiol. Scand., Suppl. 525.

  • Nilsson, G. E., Tenland, T. andÖberg, P.-Å. (1980a) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy.IEEE Trans., BME-27, 12–19.

    Google Scholar 

  • Nilsson, G. E., Tenland, T. andÖberg, P.-Å. (1980b) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow., BME-27, 597–604.

    Google Scholar 

  • Nilsson, G. E. (1984) Signal processor for laser Doppler tissue flowmeters.Med. & Biol. Eng. & Comput.,22, 343–348.

    Article  Google Scholar 

  • Rolfe, P. (Ed.) (1979)Non-invasive physiological measurements. Academic Press, London, Vol. 1.

    Google Scholar 

  • Rudolph, A. M. andHeymann, M. A. (1967) The circulation of the fetus in utero: methods for studying distribution of blood flow, cardiac output and organ blood flow.Circ. Res.,21, 163–184.

    Google Scholar 

  • Salerud, E. G., Tenland, T., Nilsson, G. E. andÖberg, P.-Å. (1983) Rhythmical variations in human skin blood flow.Int. J. Microcirc: Clin. & Exp.,2, 91–102.

    Google Scholar 

  • Sejrsen, P. (1968) Atraumatic local labeling of skin by inert gas: epicutaneous application of xenon 133.J. Appl. Physiol.,24, 570–572.

    Google Scholar 

  • Sejrsen, P. (1969) Blood flow in cutaneous tissue in man studied by washout of radioactive xenon.Circ. Res.,25, 215–229.

    Google Scholar 

  • Sejrsen, P. (1971) Measurement of cutaneous blood flow by freely diffusable radioactive isotopes. Thesis, University of Copenhagen.

  • Seldinger, S. I. (1953) Catheter replacement of the needle in percutaneous arteriography.Acta Radiol.,39, 368–376.

    Article  Google Scholar 

  • Stern, M. D. (1975) In vivo evaluation of microcirculation by coherent light scattering.Nature,254, 56–58.

    Article  Google Scholar 

  • Stern, M. D., Bowen, P. D., Parma, R., Osgood, R. W., Bowman, R. L. andStein, J. H. (1979) Measurement of renal cortical and medullary blood flow by laser-Doppler spectroscopy in the rat.Am. J. Physiol.,236, F80-F87.

    Google Scholar 

  • Tanaka, T. andBenedek, G. B. (1975) Measurement of the velocity of blood flow (in vivo) using a fiber optic catheter and optical mixing spectroscopy.Appl. Optics,14, 189–196.

    Google Scholar 

  • van der Staak, W. J. B. M., Brakkee, A. J. M. andde Rujke-Herweijer, H. E. (1968) Measurement of the thermal conductivity of the skin as an indication of skin blood flow.J. Invest. Dermatol.,51, 149–154.

    Article  Google Scholar 

  • Watkins, D. andHolloway, G. A. Jr. (1978) An instrument to measure cutaneous blood flow using the Doppler shift of laser light.IEEE Trans., BME-25, 28–33.

    Google Scholar 

  • Weinman, J., Hayat, A. andRaviv, G. (1977) Reflection photoplethysmography of arterial-blood-volume pulses.Med. & Biol. Eng. & Comput.,15, 22–31.

    Article  Google Scholar 

  • Wiedeman, M. P. (1963) Patterns of the arteriovenous pathways. InHandbook of physiology.Hamilton, W. F. andDow, P. (Eds.), Circulation, Section 2. Williams & Wilkins, Baltimore, Vol. II, 891–933.

    Google Scholar 

  • Wolgast, M. (1968) Studies on the regional renal blood flow with P32-labelled red cells and small beta-sensitive semiconductor detectors. Thesis.Acta Physiol. Scand., Suppl. 313.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göran Salerud, E., Åke Öberg, P. Single-fibre laser Doppler flowmetry. Med. Biol. Eng. Comput. 25, 329–334 (1987). https://doi.org/10.1007/BF02447433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02447433

Keywords

Navigation