Skip to main content
Log in

Comprehensive model for the simulation of left ventricle mechanics

Part 1 Model description and simulation procedure

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A comprehensive numerical model, based on the finite-element method, for the continuous simulation of the complete cardiac cycle is presented. The model uses real, measuredin vivo, three-dimensional geometry of the ventricle, and accounts for the anisotropy of the ventricular wall, the large deformations it undergoes during the cardiac cycle, the material nonlinearity of the myocardium and its mechanical activation. The simulation process is carried out incrementally while adjusting the mechanical activation for each increment so as to produce the same change in cavity volume as that measured experimentally. A detailed analysis of a complete cycle of the canine heart is presented in Part 2 of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arts, T., Reneman, R. S. andVeenstra, P. C. (1979) A model of the mechanics of the left ventricle.Ann. Biomed. Eng.,7, 299–318.

    Article  Google Scholar 

  • Capello, A., Comincioli, V., Minelli, R., Reggioni, C. andRicciardi, L. (1981) Study and parameters identification of a rheological model for excised quiescent cardiac muscle.J. Biomech.,14, 1–11.

    Article  MathSciNet  Google Scholar 

  • Demer, L. L. andYin, F. C. P. (1983) Passive biaxial mechanical properties of isolated canine myocardium.J. Physiol.,339, 615–630.

    Google Scholar 

  • Feit, T. S. (1979) Diastolic pressure-volume relation and distribution of pressure and fiber extension across the wall of a model left ventricle.Ann. Biomed. Eng.,28, 143–166.

    Google Scholar 

  • Greenbaum, R. A., Ho, S. V., Gibson, D. G., Becker, A. andAnderson, R. H. (1981) Left ventricular fiber architecture in man.Br. Heart J.,45, 248–263.

    Google Scholar 

  • Heethaar, R. M., Pao, Y. C. andRitman, E. L. (1977) Computer aspects of three-dimensional finite element analysis of stresses and strains in the intact heart.Comput. Biomed. Res.,10, 271–285.

    Article  Google Scholar 

  • Horowitz, A. (1984) A numerical model for the simulation of the mechanics of the left ventricle. M.Sc. thesis, Technion-Israel Institute of Technology, Haifa, Israel.

    Google Scholar 

  • Horowitz, A., Perl, M., Ritman, E. andSideman, S. (1986) A comprehensive model for the simulation of left ventricle mechanics. Part 2. Implementation and results analysis.Med. & Biol. Eng. & Comput.,24, 150–156.

    Google Scholar 

  • Kitabatake, A. andSuga, H. (1978) Diastolic stress-strain relation of nonexcised blood perfused canine papillary muscle.Am. J. Physiol.,234, 416–419.

    Google Scholar 

  • Moskowitz, S. E., Lewis, B. S., Halon, D. A., Amar, R. andGotsman, M. S. (1978) Computer prediction of left ventricular compliance throughout diastole in normal patients.Eur. J. Cardiol.,7/Suppl., 121–132.

    Google Scholar 

  • Pao, Y. C. (1980) Discussion: geometric modelling of the human left ventricle.J. Biomech. Eng. 102, 274–275.

    Google Scholar 

  • Pao, Y. C., Nagendra, G. K., Padiyar, R. andRitman, E. L. (1980) Derivation of myocardial fiber stiffness equation based on theory of laminated composites.,102, 252–257.

    Google Scholar 

  • Perl, M. andHorowitz, A. (1985) Limitations of finite element models of the left ventricle—review and future prospects, Proc. Henry Goldberg Workshop Simul. Imag. Cardiac Syst.,Sidem, S., andBeyar, R. (Eds.), Martinus Niihoff.

  • Pinto, J. G. andFung, Y. C. (1973) Mechanical properties of the heart muscle in the passive state.J. Biomech.,6, 597–616.

    Article  Google Scholar 

  • Ritman, E. L., Kinsey, J. H., Robb, R. A., Gilbert, B. K., Harris, L. D. andWood, E. H. (1980) Three-dimensional imaging of heart, lung and circulation.Science,210, 273–280.

    Google Scholar 

  • Sonnenblick, E. H. (1980) The structural basis and importance of restoring forces and elastic recoil for the filling of the heart.Eur. Heart J.,1 Suppl., 107–110.

    Google Scholar 

  • Streeter, D. D. andHanna, W. T. (1973) Engineering mechanics for successive states in canine left ventricular myocardium.Circ. Res.,33, 656–664.

    Google Scholar 

  • Streeter, D. D. (1979) Gross morphology and fiber geometry of the heart. InHandbook of physiology, vol. 1 The heart.Berne, R. M., Sperelakis, N. andGeiger, S. R. (Eds.), Am. Phys. Soc., Bethesda, Section 2: The cardiovascular system, 61–112.

    Google Scholar 

  • Tozeren, A. (1983) Static analysis of the left ventricle.J. Biomech. Eng.,105, 39–46.

    Article  Google Scholar 

  • Yettram, A. L. andVinson, C. A. (1979a) Geometric modelling of the human left ventricle.,101, 221–223.

    Google Scholar 

  • Yettram, A. L. andVinson, C. A. (1979b) Orthotropic elastic moduli for left ventricular mechanical behaviour.Med. & Biol. Eng. & Comput.,17, 25–30.

    Google Scholar 

  • Yettram, A. L., Vinson, C. A. andGibson, D. G. (1983) Effect of myocardial fiber architecture on the behavior of the human left ventricle in diastole.J. Biomed. Eng.,5, 321–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perl, M., Horowitz, A. & Sideman, S. Comprehensive model for the simulation of left ventricle mechanics. Med. Biol. Eng. Comput. 24, 145–149 (1986). https://doi.org/10.1007/BF02443927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02443927

Keywords

Navigation