Skip to main content
Log in

A model of the mechanics of the left ventricle

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The relation between cardiac muscle mechanics and left ventricular (LV) pump function is simulated by a mathematical model. In the following article special attention is paid to the relation between LV pressure and LV volume on the one hand and the transmural distribution of sarcomere length and fiber stress on the other. The LV is simulated by a thick-walled cylinder composed of 8 concentric shells. The myocardial material is assumed to be anisotropic. The orientation and sequential activation of the muscle fibers across the LV wall are considered per shell. Twisting of the base with respect to the apex around the axis of the LV is simulated by rotation of the upper cross-sectional surface of the cylinder with respect to the lower one aroud the axis of the cylinder.

The model reveals that twisting of the LV is an important means to equalize transmural differences in sarcomere shortening and end-systolic fiber stress. When torsion is allowed, transmural differences in sarcomere shortening and end-systolic fiber stress are less than 18% and 16%, respectively. When torsion is prevented as in most of the models of LV-mechanics described in literature, these transmural differences increase up to 32% and 42%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arts, M. G. J. A mathematical model of the dynamics of the left ventricle and the coronary circulation. Thesis, University of Limburg, The Netherlands, 1978.

    Google Scholar 

  2. Arts, T., and R. S. Reneman. Analysis of intramyocardial pressure (IMP). A model study.Bibl. Anat. 15:103–107, 1977.

    PubMed  Google Scholar 

  3. Back, L. Left ventricular wall and fluid dynamics of cardiac contraction.Math. Biosci. 36:257–297, 1977.

    Article  Google Scholar 

  4. Binkhorst, R. A., L. Hoofd, and A. C. A. Vissers. Temperature and force-velocity relationship of human muscles.J. Appl. Physiol. 42:471–475, 1977.

    CAS  PubMed  Google Scholar 

  5. Durrer, D., R. Th. van Dam, G. E. Freud, M. J. Janse, F. L. Meyler, and R. C. Arzbaecher. Total excitation of the isolated human heart.Circulation 41:899–912, 1970.

    CAS  PubMed  Google Scholar 

  6. Edman, K. A. P. and E. Nilsson. The mechanical parameters of myocardial contraction studied at a constant length of the contractile element.Acta Physiol. Scand. 27:205–219, 1968.

    Google Scholar 

  7. Gould, P., D. Ghista, and L. Brombolich. In vivo stresses in the human left ventricular wall: Analysis accounting for the irregular 3-dimensional geometry and comparison with idealised geometry analyses.J. Biomech. 5:521–539, 1972.

    Article  CAS  PubMed  Google Scholar 

  8. Hanna, W. T.. A simulation of human heart function.Biophys. J. 13:603–621, 1973.

    CAS  PubMed  Google Scholar 

  9. Hill, A. V. A discussion on muscular contraction and relaxation: Their physical and chemical basis. Proc. R. Soc. London, Ser. B 137:40–87, 1950.

    CAS  Google Scholar 

  10. Hood, W. P. Jr., W. J. Thomson, C. E. Rackley and E. L. Rolett. Comparison of calculations of left ventricular wall stress in man from thin-walled and thick-walled ellipsoidal models.Circ. Res. 24:575–582, 1969.

    PubMed  Google Scholar 

  11. Hort, W. Makroskopische und mikrometrische Untersuchungen am Myocard verschieden stark gefüllter linker Kammern.Vichows Arch. Pathol. Anat. 333:523–564, 1960.

    CAS  Google Scholar 

  12. Janz, R. F. and A. F. Grimm. Finite-element model for the mathematical behaviour of the left ventricle.Circ. Res. 30:224–252, 1972.

    Google Scholar 

  13. Janz, R. F. and A. F. Grimm. Deformation of the diastolic left ventricles: I. Non-linear elastic effects.Biophys. J. 13:589–704, 1973.

    Google Scholar 

  14. McHale, P. A. and J. C. Greenfield. Evaluation of several geometric models for estimation of left ventricular circumferential wall stress.Circ. Res. 33:303–312, 1973.

    CAS  PubMed  Google Scholar 

  15. Mirsky, I. Left ventricular stresses in the intact human heart.Biophys. J. 9:189–208, 1969.

    CAS  PubMed  Google Scholar 

  16. Mirsky, I.. Ventricular and arterial wall stresses based on large deformation analysis.Biophys. J. 13:1141–1159, 1973.

    CAS  PubMed  Google Scholar 

  17. Pao, Y. C., E. L. Ritman, and E. H. Wood. Finite element analysis of left ventricular myocardial stresses.J. Biomech. 7:469–477, 1974.

    Article  CAS  PubMed  Google Scholar 

  18. Pao, Y. C., R. A. Robb, and E. L. Ritman. Plain-strain finite-element analysis of reconstructed diastolic left ventricular cross-section.Ann. Biomed. Eng. 4:232–249, 1976.

    CAS  PubMed  Google Scholar 

  19. Pollack, G. H. and J. W. Krueger. Sarcomere dynamics in intact cardiac muscle.Eur. J. Cardiol. 4:53–65, 1976.

    PubMed  Google Scholar 

  20. Rankin, J. S., P. McHale, C. E. Arentzen, D. Ling, J. C. Greenfield, and R. W. Anderzon. The three-dimensional dynamic geometry of the left ventricle in the conscious dog.Circ. Res. 39:304–313, 1976.

    CAS  PubMed  Google Scholar 

  21. Sagawa, K. The ventricular pressure-volume diagram revisited.Circ. Res. 43:677–687, 1978.

    CAS  PubMed  Google Scholar 

  22. Scher, A. M. and A. C. Young. The pathway of ventricular depolarisation in the dog.Circ. Res. 4:461–469, 1956.

    CAS  PubMed  Google Scholar 

  23. Sonnenblick, E. H., D. Spiro, and T. S. Cotrell. Fine structural changes in heart muscle in relation to the length tension curve.Proc. Nat. Acad. Sci. USA. 49:193–200, 1963.

    CAS  PubMed  Google Scholar 

  24. Spotnitz, H. M., E. H. Sonnenblick, and D. Spiro. Relation of ultrastructure to function in intact heart. Sarcomere structure relative to pressure-volume curves of intact left ventricles of dog and cat.Circ. Res. 18:49–66, 1966.

    CAS  PubMed  Google Scholar 

  25. Streeter, D. D., H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick. Fiberorientation in the canine left ventricle during diastole and systole.Circ. Res. 33:656–664, 1973.

    PubMed  Google Scholar 

  26. Streeter, D. D., R. N. Vaishnav, D. J. Patel, H. M. Spotnitz, J. Ross, and E. H. Sonnenblick. Stress distribution in the canine left ventricle during diastole and systole.Biophys. J. 10: 345–363, 1970.

    PubMed  Google Scholar 

  27. Suga, H. and K. Yamakoski. Left ventricle as a compression pump.Eur. J. Cardiol. 4:97–103. 1976.

    PubMed  Google Scholar 

  28. Ter Keurs, H. E. D. J., T. Iwazumi, and G. H. Pollack. Sarcomere length-tension relation in skeletal muscle.J. Gen. Physiol. 27:565–592, 1978.

    Google Scholar 

  29. Wong, A. Y. K. and P. M. Rautoharju. Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell.Am. Heart J 75:649–661, 1968.

    Article  CAS  PubMed  Google Scholar 

  30. Yoran, C., J. W. Covell, and J. Ross. Structural basis for the ascending limb of left ventricular function.Circ. Res. 32:297–303, 1973.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Foundation for Medical Research FUNGO, which is subsidized by the Netherlands organization for the Advancement of Pure Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arts, T., Reneman, R.S. & Veenstra, P.C. A model of the mechanics of the left ventricle. Ann Biomed Eng 7, 299–318 (1979). https://doi.org/10.1007/BF02364118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364118

Keywords

Navigation