Skip to main content
Log in

Numerical scheme for modelling oxygen transfer in tubular oxygenators

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The diffusion equation for oxygen transfer in tubular membrane oxygenators has been solved numerically by using the Crank-Nicolson method. The iterative procedure takes care of the nonlinear nature of the equations used in the model. The usual hypotheses have been used for the establishment of the nonlinear partial differential equation. Velocity profile (Newtonian, Cassonian fluid) and membrane resistance have been taken into account. Theoretical results have been compared with those obtained by the advanced front theory.

Experimental results with several types of device are presented using either blood or saline. Boundary conditions are analysed. Comparisons between theory and results of experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, P. L. (1961) Blood and other body fluids. InFederation of American Societies for Experimental Biology,Dittmer, D. S. (Ed.),Biological Handbooks.

  • Bellhouse, B. J., Bellhouse, F. H., Curl, C. M., MacMillan, T. I., Gunning, A. J., Spratt, E. H., MacMurray, S. B. andNelems, J. M. (1973) A high efficiency membrane oxygenator and pulsatile pumping system, and its application to animal trials.Trans. Amer. Soc. Artif. Intern. Organs,19, 72.

    Google Scholar 

  • Buckles, R. G., Merril, E. W. andGilliland, E. R. (1968) An analysis of oxygen absorption in a tubular membrane oxygenator.A.I.Ch.E.J.,14, 403–408.

    Google Scholar 

  • Casson, N. (1959)Rheology of disperse systems,Mill,C. C. (Ed.), Pergamon Press, New York, chap. 5.

    Google Scholar 

  • Carslaw, H. S. andJaerger, J. C. (1959)Conduction of heat in solids, Clarendon Press, Oxford.

    Google Scholar 

  • Colton, C. K. andDrake, R. F. (1971) Effect of boundary conditions on oxygen transport to blood flowing in a tube.Chem. Engr. Progr. Symp., No. 114,67, 88–95.

    Google Scholar 

  • Colton, C. K. (1976) Fundamentals of gas transport in blood. InArtifical lungs for acute respiratory failure,Zapol,W. M. andQvist,J. (Eds.). Academic Press, New York, San Francisco, London.

    Google Scholar 

  • Dorn, W. S. andMcCracken, D. D. (1972) Numerical methods with Fortran IV: case studies, Wiley, New York.

    MATH  Google Scholar 

  • Dorson, W. Jr., Baker, E., Cohen, M. L., Meyer, B., Molthan, D. andElgas, R. (1969) A perfusion system for infants.Trans. Am. Soc. Artif. Int. Organs,15, 155–160.

    Google Scholar 

  • Dorson, W. J. (1970) Oxygenation of blood for clinical applications. InBlood oxygenation,Hershey,D. (Ed.), Plenum Press, New York.

    Google Scholar 

  • Dorson, W. J. andVoorhees, M. E. (1976) Analysis of oxygen and carbon-dioxide transfer in membrane lungs. InArtificial lungs for acute respiratory failure,Zapol, W. M. andQvist, J. (Eds.), Academic Press.

  • Drinker, P. A., Bartlett, R. H., Bialer, R. M. andNoyes, B. S. Jr. (1969) Augmentation of membrane gas transfer by induced sensory flows.Surgery,66, 775–781.

    Google Scholar 

  • Eberhart, R. C., Dengle, S. K. andCurtis, R. M. (1978) Mathematical and experimental methods for design and evaluation of membrane oxygenators.Artificial Organs,2, 19–34.

    Article  Google Scholar 

  • Forsythe, G. E. andWason, W. R. (1960) Finite differences methods for partial differential equation, Wiley, New York.

    Google Scholar 

  • Gaylor, J.D.S., Murphy, J.F., Caprini, J.A., Uckerman, I. andMockros, I. F. (1973) Gas transfer and thrombogenesis in an annular membrane oxygenator with active blood mixing. —Trans. Amer. Soc. Artif. Intern. Organs,20, 516–524.

    Google Scholar 

  • Gertz, K. H. andLoeschske (1954) Bestimmung der Diffusion- Koeffizienten von H2, O2, N2 and H e in Wasser und Blutserum bei Konstant gehaltener Konvektion.Z. Natuforschg 96:1.

    Google Scholar 

  • Goldsmith, H. L. (1971a) Red cell motions and wall interactions in tube flow.Fed. Proc.,30, 1578.

    Google Scholar 

  • Goldsmith, H. L. (1971b) Deformation of human red cells in tube flow.Biorheology,7, 235.

    Google Scholar 

  • Goldstick, T. K. andFatt, I. (1970) Diffusion of oxygen in solutions of blood protein.Chem. Eng. Prog. Symp.,66, 110–113.

    Google Scholar 

  • Harris, G. W., Tomkins, F. O., de Fillippi, R. P., Porier, S. H. andBuckley, M. J. (1970) Development of capillary membrane blood oxygenators. InBlood oxygenation,Hershey,D. (Ed.), Plenum Press, New York.

    Google Scholar 

  • Hershey, D. andKarhan, T. (1968) Diffusion coefficients for oxygen transport in whole blood.A.I.Ch.E.J.,14, 6, 969–972.

    Google Scholar 

  • Keller, K. H. andFriedlander, S. K. (1966) The steady state transport of oxygen through hemoglobin solutions.J. Gen. Physiol.,49, 4 663–679.

    Article  Google Scholar 

  • Keller, K. H. (1971) Effect of fluid shear on mass transport in flowing blood.Fed. Proc.,30, 1591–1599.

    Google Scholar 

  • Kreuzer, F. (1953) Modellversuche zum Problem der Sauerstoff Diffusion in der Lunger.Helv. Physiol. et Pharm. Acta. Suppl. IX.

  • Lautier, A., Grossin, R. andLaurent, D. (1971) The use of mathematical and physical models for optimization of oxygenators.Trans. Am. Soc. Artif. Int. Organs,17, 303–308.

    Google Scholar 

  • Lightfoot, E. N. (1968) Low order approximation for membrane blood oxygenators.A.I.Ch.E.J.,14, 669–670.

    Google Scholar 

  • Margaria, R., Turelli, G. andPini, A. (1962) Definizione matematica della curva di dissociazione dell'HbO2.Rend. Sc. Fis. Mat. e. Nat.,32, 606–613.

    Google Scholar 

  • Mockros, L. F. andGaylor, J. D. S. (1975) Artificial lung design: tubular membrane units.Med. & Biol. Eng.,13, 171–181.

    Google Scholar 

  • Overcash, M. R. (1972) Couette oxygenator. PhD thesis, University of Minnesota.

  • Rossing, R. G. andCain, S. M. (1966) A nomogram relatingpO2, pH, temperature and hemoglobin saturation in the dog.J. Appl. Physiol.,21, 195–201.

    Google Scholar 

  • Shay, W., Schultz, D. G. andShah, V. L. (1974) Diffusion of oxygen through blood flowing in a tube. 27th ACEMB, 194.

  • Schultz, D. H., Shah, V. L., Shay, W. andWang, P. (1977) Diffusion of oxygen and carbon dioxide through blood flowing in a channel.Med. & Biol. Eng. & Comput.,15, 98–105.

    Google Scholar 

  • Stein, T. R., Martin, J. C. andKeller, K. H. (1971) Steady state oxygen transport through red blood cell suspensions.J. Appl. Physiol.,31, 397–402.

    Google Scholar 

  • Villarroel, F., Lanham, C. E., Bischoff, K. B., Regan, T. M. andCalkins, J. M. (1970) A mathematical model for the prediction of oxygen, carbon dioxide and pH with augmented diffusion in capillary blood oxygenators. InBlood oxygenation,Hershey,D. (Ed.), Plenum Press, New York.

    Google Scholar 

  • Weissman, M. B. andMockros, L. F. (1967) Oxygen transport to blood flowing in round tubes.J. Engng. Mech. Div. Proc. ASCE,93, 225–244.

    Google Scholar 

  • Weissman, M. H. andMockros, L. F. (1969) Oxygen and carbon dioxide transfer in membrane oxygenators.Med. & Biol. Eng.,7, 169–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaraman, G., Lautier, A., Hung, BM. et al. Numerical scheme for modelling oxygen transfer in tubular oxygenators. Med. Biol. Eng. Comput. 19, 524–534 (1981). https://doi.org/10.1007/BF02442764

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442764

Keywords

Navigation