Skip to main content
Log in

Odor detection performance of rats followingd-amphetamine treatment: a signal detection analysis

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The effects ofd-amphetamine sulfate (0.2, 0.4, 0.8, and 1.6 mg/kg SC) on the odor detection performance of 16 adult male Long Evans rats was assessed using high precision olfactometry and a go/no-go operant signal detection task. The drug or saline was administered every 3rd day in a counterbalanced order, with the injections occurring 5 min before each 260-trial test session. Relative to saline, enhanced detection performance to the target stimulus (ethyl acetate), as measured by a non-parametric signal detection index (SI), was observed following administration of 0.2 mg/kg of the drug, whereas decreased detection performance was observed following administration of 1.6 mg/kg of the drug. Significant increases in the responsivity index (RI) occurred at the higher drug dosages for the lower odorant concentrations. In addition, small but statistically significant increases in the latency to respond in the presence of the odor (i.e., S+ response latency) were present at the higher drug dosages. Overall, these data suggest that (a) odor detection performance is enhanced by low doses of amphetamine, (b) odor detection performance is depressed by moderate doses of amphetamine, and (c) drug-related alterations in response criteria occur following the administration of moderate doses of amphetamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlenius S, Carlsson A, Engel J (1975) Antagonism by baclophen of thed-amphetamine-induced disruption of a successive discrimination in the rat. J Neural Transm 36:327–333

    Article  PubMed  CAS  Google Scholar 

  • Altshuler HL, Burch NR (1975) Period analysis of the electroencephalogram of subhuman primates. In: Burch N, Altshuler HL (eds) Behavior and brain electrical activity. Plenum, New York, pp 277–302

    Google Scholar 

  • Bradley PB, Key BJ (1958) The effect of drugs on the arousal responses produced by electrical stimulation of the reticular formation of the brain. Electroencephalogr Clin Neurophysiol 10:97–110

    Article  CAS  Google Scholar 

  • Delay ER, Steiner NO, Issac W (1979) Effects ofd-amphetamine and methylphenidate upon auditory threshold in the squirrel monkey. Pharmacol Biochem Behav 10:861–864

    Article  PubMed  CAS  Google Scholar 

  • Doty RL, Shaman P, Dann M (1984) Development of the University of Pennsylvania Smell Identification Test: A standardized microencapsulated test of olfactory function. Physiol Behav 32:489–502

    Article  PubMed  CAS  Google Scholar 

  • Dravnieks A (1979) Instrumental aspects of olfactometry. In: Moulton DG, Turk A, Johnston JW, Jr (eds) Methods in olfactory research. Academic, New York, pp 1–61

    Google Scholar 

  • Elsberg CA, Levy I (1935) The sense of smell. I. A new and simple method of quantitative olfactometry. Bull Neurol Inst NY 4:5–19

    Google Scholar 

  • Ervin GN, Schmitz SA, Nemeroff CB, Prange AJ (1981) Thyrotropin-releasing hormone and amphetamine produce different patterns of behavioral excitation in rats. Eur J Pharmacol 72:35–43

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL, Robbins TW (1985) The effects ofd-amphetamine, chlodiazepoxide and alpha-flupenthixol on food-reinforced tracking of a visual stimulus by rats. Psychopharmacology 85:361–366

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. III. Olfactory bulb, anterior olfactory nuclei, olfactory tubercle, and piriform cortex. J Comp Neurol 180:533–544

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH, Koziell DA, Moore RY (1978) Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex, and entorhinal cortex. J Comp Neurol 180:509–532

    Article  PubMed  CAS  Google Scholar 

  • Felix D, McLennan H (1971) The effect of bicuculline on the inhibition of mitral cells of the olfactory bulb. Brain Res 25:661–664

    Article  PubMed  CAS  Google Scholar 

  • Fray PJ, Sahakin BJ, Robbins TW, Koob GF, Iversen SD (1980) An observational method for quantifying the behavioural effects of dopamine agonists: Contrasting effects ofd-amphetamine and apomorphine. Psychopharmacology 69:253–259

    Article  PubMed  CAS  Google Scholar 

  • Frey PW, Colliver JA (1973) Sensitivity and responsivity measures for discrimination learning. Learn Motiv 4:327–342

    Article  Google Scholar 

  • Goetzl FR, Stone F (1948) The influence of amphetamine sulfate upon olfactory acuity and appetite. Gastroenterology 10:708–713

    Google Scholar 

  • Goetsch VL, Isaac W (1983) The effects ofd-amphetamine on visual sensitivity in the rat. Eur J Pharmacol 87:465–468

    Article  PubMed  CAS  Google Scholar 

  • Guild AA (1956) Olfactory acuity in normal and obese human subjects: Diurnal variations and the effect ofd-amphetamine sulfate. J Laryngol Otol 70:408–414

    PubMed  CAS  Google Scholar 

  • Hienz RD, Lukas SE, Brady JV (1985) Effects ofd-methamphetamine on auditory and visual reaction times and detection thresholds in the baboon. Psychopharmacology 85:476–482

    Article  PubMed  CAS  Google Scholar 

  • Horn AS, Cuello AC, Miller RJ (1974) Dopamine in the mesolimbic system of the rat brain: endogenous levels and the effects of drugs on the uptake mechanisms and stimulation of adenylate cyclase activity. J Neurochem 22:265–270

    PubMed  CAS  Google Scholar 

  • Jahr CE, Nicholl RA (1982) Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb. Nature 297:227–229

    Article  PubMed  CAS  Google Scholar 

  • Janowitz HD, Grossman MI (1949) Gusto-olfactory thresholds in relation to appetite and hunger sensations. J Appl Physiol 2:217–222

    Google Scholar 

  • Kleitman N, Schreiber J (1940) Sleepiness and diplopia. Am J Physiol 129:P398

    Google Scholar 

  • Koek W, Slangen JL (1983) Effects ofd-amphetamine and morphine on discrimination: Signal detection analysis and assessment of response repetition in the performance deficits. Psychopharmacology 80:125–128

    Article  PubMed  CAS  Google Scholar 

  • Krushinsky LV, Fless DA (1959) Artificial strengthening of smell in trained dogs. Zh Vysshei Nervnoi Deiatel'nosti im. I.M. Pavlova 9:284–290 (in Russian)

    Google Scholar 

  • Landauer MR, Balster RL (1982) A new test for social investigation in mice: Effects ofd-amphetamine. Psychopharmacology 78:322–325

    Article  PubMed  CAS  Google Scholar 

  • Lebensohn JE, Sullivan RR (1944) Temporary stimulation of emmetropic visual acuity. US Nav Med Bull 43:90–95

    Google Scholar 

  • Louilot A, Gonon F, Buda M, Simon H, LeMoal M, Pujol JF (1985) Effects ofd- andl-amphetamine on dopamine metabolism and ascorbic acid levels in nucleus accumbens and olfactory tubercle as studied by in vivo differential pulse voltametry. Brain Res 336:253–265

    Article  PubMed  CAS  Google Scholar 

  • Mackworth JF (1965) The effect of amphetamine on the detectability of signals in a vigilance task. Can J Psychol 19:104–110

    PubMed  CAS  Google Scholar 

  • Mair RG, Doty RL, Kelly KM, Wilson CS, Langlais PJ, McEntee WJ, Vollmecke TA (1986) Multimodal sensory discrimination deficits in Korsakoff's psychosis. Neuropsychologia 24:831–839

    Article  PubMed  CAS  Google Scholar 

  • Myznikov NM (1958) Sensitivity of the olfactory analyser in service dogs and methods of enhancing it. Zh Vysshei Nervnoi Deiatel'nosti im. I.P. Pavlova 8:744–750 (in Russian)

    CAS  Google Scholar 

  • Nigrosh BJ, Slotnick BM, Nevin JA (1975) Olfactory discrimination, reversal learning, and stimulus control in rats. J Comp Physiol Psychol 89:285–294

    Article  PubMed  CAS  Google Scholar 

  • Pissonnier D, Thiery JC, Fabre-Nys C, Poindron P, Keverne EB (1985) The importance of olfactory bulb noradrenaline for maternal recognition in sheep. Physiol Behav 35:361–363

    Article  PubMed  CAS  Google Scholar 

  • Porrino LJ, Lucignani G, Dow-Edwards D, Sokoloff L (1984) Correlation of dose-dependent effects of acute amphetamine administration on behavior and local cerebral metabolism in rats. Brain Res 307:311–320

    Article  PubMed  CAS  Google Scholar 

  • Ridley RM, Baker HF, Weight ML (1980) Amphetamine disrupts successive but not simultaneous visual discrimination in the monkey. Psychopharmacology 67:241–244

    Article  PubMed  CAS  Google Scholar 

  • Royet JP, Gervais R, Araneda S (1983) Effect of local 6-OHDA and 5,6-DHT injections into the rat olfactory bulb on neophobia and learned aversion to a novel food. Behav Brain Res 10:297–309

    Article  PubMed  CAS  Google Scholar 

  • Shipley MT, Halloran FJ, Torre JDL (1985) Surprisingly rich projection from locus coeruleus to the olfactory bulb in the rat. Brain Res 329:294–299

    Article  PubMed  CAS  Google Scholar 

  • Siegel S (1956) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York

    Google Scholar 

  • Simonson E, Enzer N (1942) Effect of Pervitin (desoxyephedrine) on fatigue of the central nervous system. J Indust Hyg Toxicol 24:205–209

    Google Scholar 

  • Slotnick BM (1984) Olfactory stimulus control in the rat. Chem Senses 9:157–165

    Google Scholar 

  • Speciale SG, Karoum F, Wyatt RJ (1980) Different effects of amphetamine and amfonelic acid on peripheral and central catecholamine metabolism. Eur J Pharmacol 62:297–307

    Article  PubMed  CAS  Google Scholar 

  • Tecce JJ, Cole JO (1974) Amphetamine effects in man: Paradoxical drowsiness and lowered electrical brain activity (CNV). Science 185:451–453

    PubMed  CAS  Google Scholar 

  • Thurmond JB (1965) Effects of amphetamine on the monkey's visual threshold. Psychon Sci 3:115–116

    Google Scholar 

  • Uehling BS, Venator ER (1967) Effects ofd-amphetamine and pentobarbital on vigilance in the rat. Psychon Sci 9:113–114

    Google Scholar 

  • Wenzel BM (1948) Techniques in olfactometry: A critical review of the last one hundred years. Psychol Bull 45:231–247

    Article  Google Scholar 

  • Winn P, Williams SF, Herberg LJ (1982) Feeding stimulated by very low doses ofd-amphetamine administered systemically or by microinjection into the striatum. Pharmacology 78:336–341

    CAS  Google Scholar 

  • Youngentob SL (1984) A quantitative analysis of sniffing strategies in rats performing odor detection tasks. Doctoral thesis, State University of New York, Health Sciences Center, Syracuse. University Microfilms International

  • Yudkin S (1941) Vitamin A and the dark-adaptation: Effect of alcohol, benzedrine, and vitamin C. Lancet 2:787–791

    Article  Google Scholar 

  • Zimney GH (1961) Method in experimental psychology. Ronald, New York, pp 158–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doty, R.L., Ferguson-Segall, M. Odor detection performance of rats followingd-amphetamine treatment: a signal detection analysis. Psychopharmacology 93, 87–93 (1987). https://doi.org/10.1007/BF02439592

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02439592

Key words

Navigation