Skip to main content
Log in

Scaling of postcranial joint size in hominoid primates

  • Published:
Human Evolution

Abstract

The scaling of sixteen articular dimensions in the locomotor skeleton of hominoid primates is examined with special reference to a recently proposed model of geometric similarity. Seven species are included in the analysis (gorillas, common chimpanzees, bonobos, orang-utans, siamang, lar gibbons, and modern humans of European descent); all specimens are adult individuals of known body mass (N=87). No significant sexual dimorphism in the scaling of joint size was observed. Overal results are compatible with the biomechanical model predictions of isometry, and lend additional support to the suggestion that joint stresses are of the same order of magnitude in animals differing vastly in body size and locomotor adaptations. The hindlimb and lumbosacral joints of humans, however, are consistently much larger than expected for their body mass. Full-time bipedality obviously precludes the sharing of weight support and propulsion with the forelimbs, and this fundamental difference is accurately reflected in the relative joint size of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander R. McN., 1980.Forces in animal joints. Engin. Med., 9: 93–97.

    Google Scholar 

  • Alexander R. McN., 1981.Analysis of force platform data to obtain joint forces. In: An Introduction to the Biomechanics of Joints and Joint Replacements. D. Dowson and V. Wright eds., pp. 30–35. Mechanical Engin. Pub. Ltd, London.

    Google Scholar 

  • Anderson M., Messner M.B. &Green W.T., 1964.Distribution of lengths of the normal femur and tibia in children from one to eighteen years of age. J. Bone Joint Surgery, 46-A: 1197–1202.

    Google Scholar 

  • Calder W.A., 1984Size, Function, and Life History. Harvard Univ. Press, Cambridge.

    Google Scholar 

  • Currey J.D., 1980.Skeletal factors in locomotion. In: Aspects of Animal Movement. H.Y. Elder & E.R. Trueman eds., pp. 27–48. Cambridge University Press, Cambridge.

    Google Scholar 

  • Frost H.M., 1973.Orthopaedic Biomechanics. Charles C. Thomas, Springfield (Illinois).

    Google Scholar 

  • Hildebrand M., 1974.Analysis of Vertebrate Structure. John Wiley, New York.

    Google Scholar 

  • Hills M. &Wood B.A., 1984.Regression lines, size, and allometry. In: Food Acquisition and Processing in Primates. D. Chivers, B. Wood & A. Bilsborough eds., pp. 535–544. Plenum, New York & London.

    Google Scholar 

  • Hodge W.A., Fijan R.S., Carlson K.L., Burgess R.C., Harris W.H. &Mann R.W., 1986.Contact pressures in the human hip joint measured in vivo. Proc. of the Nat. Acad. of Sci, USA, 83: 2879–2883.

    Article  Google Scholar 

  • Huxley J.S., 1932.Problems in Relative Growth. Cambridge University Press, London.

    Google Scholar 

  • Jenkins F.A., Jr., 1973.The functional anatomy and evolution of the mammalian humero-ulnar articulation. Amer. J. Anat., 137: 281–298.

    Article  Google Scholar 

  • Jenkins F.A., Jr., 1981.Wrist rotation in primates: a critical adaptation for brachiators. In: Vertebrate Locomotion, M.H. Day ed. Symposia of the Zoological Society of London, n. 48: 429–451.

  • Jenkins F.A., Jr. &Camazine S.M., 1977.Hip structure and locomotion in ambulatory and cursorial carnivores. J. Zool. London, 181: 351–370.

    Article  Google Scholar 

  • Jenkins F.A., Jr. &Fleagle J.G., 1975.Knuckle-walking and the functional anatomy of the wrist in living apes. In: Primate Functional Morphology and Evolution, R.H. Tuttle ed., pp. 213–227. Mouton, The Hague.

    Google Scholar 

  • Jouffroy F.K., Renous S. &Gasc J.P., 1983.Etude cinéradiographique des déplacements du membre antérieur du potto de Bosman (Perodicticus pottoMüller, 1766) au cours de la marche quadrupède sur une branche horizontale. Ann. Sci. Nat. Zool. Biol. Anim., 5: 75–87.

    Google Scholar 

  • Jungers W.L., 1982.Lucy's limbs: skeletal allometry and locomotion in Australopithecus afarensis. Nature, 297: 676–678.

    Article  Google Scholar 

  • Jungers W.L., 1984.Aspects of size and scaling in primate biology with special reference to the locomotor skeleton. Yearb. Phys. Anthropol., 27: 73–97.

    Article  Google Scholar 

  • Jungers W.L., 1985.Body size and scaling of limb proportions in primates. In: Size and Scaling in Primate Biology. W.L. Jungers ed., pp. 345–381. Plenum, New York & London.

    Google Scholar 

  • Jungers W.L. &Susman R.L., 1984.Body size and skeletal allometry in African apes. In: The Pygmy Chimpanzee, R.L. Susman ed., pp. 131–177. Plenum, New York & London.

    Google Scholar 

  • Kapandji I.A., 1970.The Physiology of the Joints. Churchill Livingstone, New York.

    Google Scholar 

  • Kimura T., Okada M. &Ishida H., 1979.Kinesiological characteristics of primate walking: its significance in human walking. In: Environment, Behavior, and Morphology: Dynamic Interactions in Primates, M.E. Morbeck, H. Preuschoft & N. Gomberg eds., pp. 297–311. G. Fischer, New York.

    Google Scholar 

  • Kuhry B. &Marcus L.F., 1977.Bivariate linear models in biometry. Syst. Zool., 26: 201–209.

    Article  Google Scholar 

  • McConaill M.A. &Basmajian J.V., 1969.Muscles and Movements. A Basis for Human Kinesiology. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Norkin C. &Levangie P., 1983.Joint Structure and Function. A Comprehensive Analysis. F.A. Davis, Philadelphia.

    Google Scholar 

  • Paul J.P., 1980.Joint kinetics. In: The Joints and Synovial Fluid, Vol. II, pp. 139–176.

  • Radin E.L., 1982.Mechanical factors in the causation of osteoarthritis. In: Rheumatology, vol. 7, M. Schattenkirchner ed., pp. 46–52. S. Karger, Basel.

    Google Scholar 

  • Radin E.L., Orr R.B., Kelman J.L., Paul I.L. &Rose R.M., 1982.Effect of prolonged walking on concrete on the knees of sheep. J. of Biomech., 15: 487–492.

    Article  Google Scholar 

  • Rayner J.M.V., 1985.Linear relations in biomechanics: the statistics of scaling functions. J. Zool., London, 206: 415–439.

    Article  Google Scholar 

  • Reed R.B. &Stuart H.L., 1959.Patterns of growth in height and weight from birth to eighteen years of age. Pediatrics, 24: 904–921.

    Google Scholar 

  • Reynolds T.R., 1981.Mechanics of interlimb weight redistribution in primates. Doctoral dissertation, State University of New Jersey at Rutgers.

  • Reynolds T.R., 1985.Stresses on the limbs of quadrupedal primates. Am. J. Phys. Anthropol., 67: 351–362.

    Article  Google Scholar 

  • Scherrer P.K., Hillberry B.M. &Van Sickle D.C., 1979.Determining the in vivoareas of contact in the canine shoulder. J. Biomech. Engin., 101: 271–278.

    Google Scholar 

  • Schmidt-Nielsen K., 1984.Scaling: Why is Animal Size so Important? Cambridge University Press, Cambridge.

    Google Scholar 

  • Seim E. &Saether B.E., 1983.On rethinking allometry: which regression model to use? J. Theor. Biol., 104: 161–168.

    Article  Google Scholar 

  • Smith R.J., 1984.Allometric scaling in comparative biology: problems of concept and method. Am. J. Physiol., 246: R152-R160.

    Google Scholar 

  • Sokal R.R. &Rohlf F.J., 1981.Biometry (2nd ed.). W.H. Freeman, San Francisco.

    Google Scholar 

  • Stahl W.R. &Gummerson J.Y., 1967.Systematic allometry in five species of adult primates. Growth, 31: 21–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungers, W.L. Scaling of postcranial joint size in hominoid primates. Hum. Evol. 6, 391–399 (1991). https://doi.org/10.1007/BF02435532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02435532

Keywords

Navigation