Skip to main content
Log in

The limits of hamiltonian structures in three-dimensional elasticity, shells, and rods

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

This paper uses Hamiltonian structures to study the problem of the limit of three-dimensional (3D) elastic models to shell and rod models. In the case of shells, we show that the Hamiltonian structure for a three-dimensional elastic body converges, in a sense made precise, to that for a shell model described by a one-director Cosserat surface as the thickness goes to zero. We study limiting procedures that give rise to unconstrained as well as constrained Cosserat director models. The case of a rod is also considered and similar convergence results are established, with the limiting model being a geometrically exact director rod model (in the framework developed by Antman, Simo, and coworkers). The resulting model may or may not have constraints, depending on the nature of the constitutive relations and their behavior under the limiting procedure.

The closeness of Hamiltonian structures is measured by the closeness of Poisson brackets on certain classes of functions, as well as the Hamiltonians. This provides one way of justifying the dynamic one-director model for shells. Another way of stating the convergence result is that there is an almost-Poisson embedding from the phase space of the shell to the phase space of the 3D elastic body, which implies that, in the sense of Hamiltonian structures, the dynamics of the elastic body is close to that of the shell. The constitutive equations of the 3D model and their behavior as the thickness tends to zero dictates whether the limiting 2D model is a constrained or an unconstrained director model.

We apply our theory in the specific case of a 3D Saint Venant-Kirchhoff material andderive the corresponding limiting shell and rod theories. The limiting shell model is an interesting Kirchhoff-like shell model in which the stored energy function is explicitly derived in terms of the shell curvature. For rods, one gets (with an additional inextensibility constraint) a one-director Kirchhoff elastic rod model, which reduces to the well-known Euler elastica if one adds an additional single constraint that the director lines up with the Frenet frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abresch, U. [1987] Constant mean curvature tori in terms of elliptic functions.J. Reine Angew. Math. 374, 169–192.

    MATH  MathSciNet  Google Scholar 

  • Antman, S. S. [1972], The theory of rods,Handbuch der Physik, Band VIa/2, S. Flügge and C. Truesdell, eds., Springer-Verlag, Berlin, 641–703.

    Google Scholar 

  • Antman, S. S. [1995],Nonlinear Problems of Elasticity, Applied Mathematical Sciences,107, Springer-Verlag, New York.

    Google Scholar 

  • Antman, S. S. and W. H. Warner [1967] Dynamical theory of hyperelastic rods.Arch. Ratl. Mech. Anal. 23, 135–162.

    MathSciNet  Google Scholar 

  • Caflisch, R. and J. H. Maddocks [1984] Nonlinear dynamical theory of the elastica.Proc. R. Soc. Edin. 99A, 1–23.

    MathSciNet  Google Scholar 

  • Camassa, R. and D. Holm [1993] An integrable shallow water equation with peaked solitons,Phys. Rev. Lett.,71, 1661–1664.

    Article  MATH  MathSciNet  Google Scholar 

  • Ciarlet, P. G. [1980], A justification of the von Kármán equations.Arch. Ratl. Mech. Anal. 73, 349–389.

    MATH  MathSciNet  Google Scholar 

  • Ciarlet, P. G. [1994] Mathematical shell theory: recent developments and open problems, inDuration and Change: Fifty years at Oberwolfach, M. Artin, H. Kraft, and R. Remmert eds., Springer-Verlag, New York, 159–176.

    Google Scholar 

  • Ciarlet, P. G. and V. Lods [1994] Analyse asymptotique des coques linéairement élastiques. III. Une justification du modèle de W. T. Koiter.C. R. Acad. Sci. Paris 319 299–304.

    MATH  MathSciNet  Google Scholar 

  • Ciarlet, P. G., V. Lods, and B. Miara [1994] Analyse asymptotique des coques linéairement élastiques. II. Coques “en flexion”.C. R. Acad. Sci. Paris 319, 95–100, 1994.

    MATH  MathSciNet  Google Scholar 

  • Ciarlet, P. G. and B. Miara [1992], Two dimensional shallow shell equations.Comm. Pure Appl. Math. XLV, 327–360.

    MathSciNet  Google Scholar 

  • Destuynder, P. [1985], A classification of thin shell theories.Acta Appl. Math. 4, 15–63.

    Article  MATH  MathSciNet  Google Scholar 

  • do Carmo, M. [1976],Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, N.J..

    Google Scholar 

  • Foltinek, K. [1994] The Hamilton theory of elastica.Amer. J. Math. 116, 1479–1488.

    Article  MATH  MathSciNet  Google Scholar 

  • Fox, D., A. Raoult, and J. C. Simo [1992] Modèles asymptotiques invariants pour des structures minces élastiques.C. R. Acad. Sci. Paris 315, 235–240.

    MATH  MathSciNet  Google Scholar 

  • Fox, D., A. Raoult, and J. C. Simo [1993] A justification of nonlinear properly invariant plate theories.Arch. Ratl. Mech. Anal.,124, 157–199.

    Article  MATH  MathSciNet  Google Scholar 

  • Ge, Z. [1991] Equivariant symplectic difference schemes and generating functions,Physica D 49, 376–386.

    Article  MATH  MathSciNet  Google Scholar 

  • Ge, Z., H. P. Kruse, J. E. Marsden and C. Scovel [1995] Poisson Brackets in the Shallow Water Approximation.Canad. Appl. Math. Quart., to appear.

  • Ge, Z. and J. E. Marsden [1988] Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory,Phys. Lett. A 133, 134–139.

    Article  MathSciNet  Google Scholar 

  • Ge, Z. and C. Scovel [1994] A Hamiltonian truncation of the shallow water equation.Lett. Math. Phys. 31, 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  • John, F. [1971] Refined interior equations for the elastic shells.Comm. Pure Appl. Math. 24, 584–675.

    Google Scholar 

  • Kato, T. [1985]Abstract Differential Equations and Nonlinear Mixed Problems. Lezioni Fermiane, Scuola Normale Superiore, Accademia Nazionale dei Lincei.

  • Koiter, W. T. [1970], On the foundation of the linear theory of thin elastic shells.Proc. Kon. Nederl. Akad. Wetensch. B69, 1–54.

    MathSciNet  Google Scholar 

  • Landau, L. D. and E. M. Lifshitz [1959],Theory of Elasticity, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Langer, J. and R. Perline [1991] Poisson geometry of the filament equation.J. Nonlin. Sci. 1, 71–94.

    Article  MATH  MathSciNet  Google Scholar 

  • Le Dret, H. and A. Raoult [1995] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity.J. Math. Pure Appl. (to appear).

  • Love, A. E. H. [1944]A Treatise on the Mathematical Theory of Elasticity. Dover, New York.

    Google Scholar 

  • Maddocks, J. [1984] Stability of nonlinearly elastic rods.Arch. Ratl. Mech. Anal. 85, 311–354.

    MATH  MathSciNet  Google Scholar 

  • Maddocks, J. [1991] On the stability of relative equilibria.IMA J. Appl. Math. 46, 71–99.

    MATH  MathSciNet  Google Scholar 

  • Marsden, J. E. and T. J. R. Hughes [1994]Mathematical Foundations of Elasticity. Dover, New York; reprint of [1983] Prentice-Hall edition.

  • Marsden, J. E., T. S. Ratiu, and G. Raugel [1995] Equations d’Euler dans une coque sphérique mince (The Euler equations in a thin spherical shell),C. R. Acad. Sci. Paris 321, 1201–1206.

    MATH  MathSciNet  Google Scholar 

  • Mielke, A. and P. Holmes [1988] Spatially complex equilibira of buckled rods.Arch. Ratl. Mech. Anal.,101, 319–348.

    MATH  MathSciNet  Google Scholar 

  • Naghdi, P. [1972], The theory of shells and plates.Handbuch der Physik Band VIa/2, S. Flügge and C. Truesdell, eds., Springer-Verlag, Berlin, 425–640.

    Google Scholar 

  • Shi, Y. and J. E. Hearst [1994] The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling.J. Chem. Phys. 101, 5186–5200.

    Article  Google Scholar 

  • Simo, J. C., M. S. Rifai, and D. D. Fox [1992], On a stress resultant geometrically exact shell models. Part VI: Conserving algorithms for nonlinear dynamics.Comp. Meth. Appl. Mech. Eng. 34, 117–164.

    MATH  MathSciNet  Google Scholar 

  • Simo, J. C., J. E. Marsden, and P. S. Krishnaprasad [1988] The Hamiltonian structure of nonlinear elasticity: The material, spatial, and convective representations of solids, rods, and plates.Arch. Ratl. Mech. Anal. 104, 125–183.

    MATH  MathSciNet  Google Scholar 

  • Simo, J. C., T. A. Posbergh, and J. E. Marsden [1990] Stability of coupled rigid body and geometrically exact rods: block diagonalization and the energy-momentum method,Phys. Rep. 193, 280–360.

    Article  MathSciNet  Google Scholar 

  • Simo, J. C., T. A. Posbergh, and J. E. Marsden [1991] Stability of relative equilibria II: Three dimensional elasticity,Arch. Ratl. Mech. Anal.,115, 61–100.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Stephen Wiggins

This paper is dedicated to the memory of Juan C. Simo

This paper was solicited by the editors to be part of a volume dedicated to the memory of Juan Simo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, Z., Kruse, H.P. & Marsden, J.E. The limits of hamiltonian structures in three-dimensional elasticity, shells, and rods. J Nonlinear Sci 6, 19–57 (1996). https://doi.org/10.1007/BF02433809

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02433809

Keywords

Navigation