Skip to main content
Log in

Light and electron microscopic morphology of the temporomandibular joint in growing and mature crab-eating monkeys (Macaca fascicularis): the condylar articular layer

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

In an attempt to establish maturational alterations in the morphology of the articular tissue layer, mandibular condyles of four immature and four mature male monkeys (Macaca fascicularis) were studied using light microscopy as well as scanning and transmission electron microscopy. Specimens were fixed in situ by perfusion in the presence of ruthenium red to stabilize proteoglycans. Preparations intended for observation in the scanning electron microscope were first dehydrated and sputtered for the examination of articular surfaces, and afterwards treated with trypsin to expose the spatial arrangement of collagen fibrils. Gross anatomical relations between joint components indicated that the anterior and central, but not the posterior region of the condylar articular surface can be subject to compressional load. Load-bearing and non-load-bearing regions differed with respect to the morphology of the articular layer. Load-bearing surfaces were covered by a prominent articular surface lamina similar to that observed on articular cartilage. This lamina seemed to constitute an integral part of the articular layer, distinct from the lining of synovial fluid, and to be composed largely of proteoglycans. It was unaffected by maturation. The subjecent, load-bearing articular layer differed markedly in structure, both from articular cartilage, and between immature and mature animals. Articular cells of immature animals were classified as fibroblastlike, but unlike typical fibroblasts, were surrounded by a thin, often incomplete halo of fibril-free pericellular matrix, presumably consisting of proteoglycans. In mature animals, articular cells closely resembled chondrocytes, but exhibited prominent nuclear fibrous laminae, which usually are found only in fibroblasts. Thus, the load-bearing part of the articular layer seems to undergo a maturation-dependent metaplastic conversion, from a dense connective tissue with some features of fibrocartilage, to a fibrocartilage-like tissue containing chrondrocytelike cells with some features of fibroblasts. This conversion might reflect an adaptation to a maturation-associated increase in articular stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleton J (1975) The ultrastructure of the articular tissue of the mandibular condyle in the rat. Arch Oral Biol 20:823–826

    Article  PubMed  CAS  Google Scholar 

  • Appleton J (1978) The fine structure of a surface layer over the fibrous articular tissue of the rat mandibular condyle. Arch Oral Biol 23:719–723

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M, Zimny ML (1987) Effects of mechanical loads on surface morphology of the condylar cartilage of the mandible in rats. Acta Anat 129:293–300

    PubMed  CAS  Google Scholar 

  • Cameron CHS, Gardner DL, Longmore RB (1976) The preparation of human articular cartilage for scanning electron microscopy. J Microsc 108:1–12

    PubMed  CAS  Google Scholar 

  • de Bont LGM, Boering G, Havinga P, Liem RSB (1984) Spatial arrangement of collagen fibrils in the articular cartilage of the mandibular condyle: A light microscopic and scanning electron microscopic study. J Oral Maxillofac Surg 42:306–313

    Article  PubMed  Google Scholar 

  • de Bont LGM, Liem RSB, Boering G (1985) Ultrastructure of the articular cartilage of the mandibular condyle: Aging and degeneration. Oral Surg Oral Med Oral Pathol 60:631–641

    Article  PubMed  Google Scholar 

  • Folke LEA, Stallard RE (1967) Cellular kinetics within the mandibular joint. Acta Odontol Scand 25:437–489

    Google Scholar 

  • Fraska JM, Parks VR (1965) A routine technique for double staining ultrathin sections using uranyl and lead salts. J Cell Biol 25:157–161

    Article  Google Scholar 

  • Gardner DL (1972) Heberden Oration, 1971. The influence of microscopic technology on knowledge of cartilage surface structure. Ann Rheum Dis 31:235–258

    PubMed  CAS  Google Scholar 

  • Gardner DL, O’Connor P, Oates K (1981) Low temperature scanning electron microscopy of dog and guinea-pig hyaline articular cartilage. J Anat 132:267–282

    PubMed  CAS  Google Scholar 

  • Gardner DL, O’Connor P, Middleton JFS, Oates K, Orford CR (1983) An investigation by transmission electron microscopy of freeze replicas of dog articular cartilage surfaces: the fibrerich surface structure. J Anat 137:573–582

    PubMed  Google Scholar 

  • Ghadially FN (1978) Fine structure of joints. In: Sokoloff L (ed) The joints and synovial fluid, vol 1. Academic Press, New York London, pp. 105–176

    Google Scholar 

  • Ghadially FN, Bhatnager R, Fuller JA (1972) Waxing and waning of nuclear fibrous lamina. Arch Pathol 94:303–307

    PubMed  CAS  Google Scholar 

  • Hascall GK (1980) Cartilage proteoglycans: Comparison of sectioned and spread whole molecules. J Ultrastruct Res 70:369–375

    Article  PubMed  CAS  Google Scholar 

  • Hylander WL, Johnson KR, Crompton AW (1987) Loading patterns and jaw movements during mastication inMacaca fascicularis: A bone-strain, electromyographic, and cineradiographic analysis. Am J Phys Anthropol 72:287–314

    Article  PubMed  CAS  Google Scholar 

  • Jagger RG, Whittaker DK (1977) The surface structure of the human mandibular condyle in health and disease. J Oral Rehabil 4:377–385

    PubMed  CAS  Google Scholar 

  • Joondeph DR (1972) An autoradiographic study of the temporomandibular articulation in the growingSaimiri sciureus monkey. Am J Orthod 62:272–286

    Article  PubMed  CAS  Google Scholar 

  • Kanouse MC, Ramfjord SP, Nasjleti CE (1969) Condylar growth in Rhesus monkeys. J Dent Res 48:1171–1176

    PubMed  CAS  Google Scholar 

  • Kempson GE (1980) The mechanical properties of articular cartilage. In: Sokoloff L (ed) The joints and synovial fluid, vol 2. Academic Press, New York London, pp 177–238

    Google Scholar 

  • Luder HU (1983) Structure and growth activities of the mandibular condyle in monkeys (Macaca fascicularis): I. Intracondylar variations. Am J Anat 166:223–235

    Article  PubMed  CAS  Google Scholar 

  • Luder HU (1987a) Structure and growth activities of the mandibular condyle in monkeys (Macaca fascicularis): II. Synergistic behavior of cell dynamics and metabolism. Am J Anat 178:185–192

    Article  PubMed  CAS  Google Scholar 

  • Luder HU (1987b) Evidence for a pubertal spurt in mandibular condylar growth of nonhuman primates. In: Carlson DS, Ribbens KA (eds) Craniofacial growth during adolescence. Monograph 20, Craniofacial Growth Series. Center for Human Growth and Development, The University of Michigan, Ann Arbor, Michigan, pp 49–67

    Google Scholar 

  • Luft JH (1971a) Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec 171:347–368

    Article  PubMed  CAS  Google Scholar 

  • Luft JH (1971b) Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec 171:369–416

    Article  PubMed  CAS  Google Scholar 

  • Malina RM (1986) Growth of muscle tissue and muscle mass. In: Falkner F, Tanner JM (eds) Human growth, vol 2: Postnatal growth, neurobiology, 2nd ed. Plenum Press, New York, pp 77–99

    Google Scholar 

  • Marchi F, Leblond CP (1983) Collagen biogenesis and assembly into fibrils as shown by ultrastructural and 3H-proline radioautographic studies on the fibroblasts of the rat foot pad. Am J Anat 168:167–197

    Article  PubMed  CAS  Google Scholar 

  • Merrilees MJ, Flint MH (1980) Ultrastructural study of tension and pressure zones in a rabbit flexor tendon. Am J Anat 157:87–106

    Article  PubMed  CAS  Google Scholar 

  • Michejda M (1987) Skeletal development of the wrist and hand inMacaca mulatta and man. Karger, Basel

    Google Scholar 

  • Middleton JFS, Oates K, O’Connor P, Orford CR, Gardner DL (1984) Demonstration by X-ray microprobe analysis of relationship between chondrocytes and tertiary surface structure of hyaline articular cartilage. Connect Tissue Res 13:1–8

    PubMed  CAS  Google Scholar 

  • Minns RJ, Steven FS (1977) The collagen fibril organization in human articular cartilage. J Anat 123:437–457

    PubMed  CAS  Google Scholar 

  • Moffett BC Jr, Johnson LC, McCabe JB, Askew HC (1964) Articular remodeling in the adult human temporomandibular joint. Am J Anat. 115:119–142

    Article  PubMed  Google Scholar 

  • Öberg T, Carlsson GE (1979) Macroscopic and microscopic anatomy of the temporomandibular joint. In Zarb GA, Carlsson GE (eds) Temporomandibular joint function and dysfunction. Munksgaard, Copenhagen, pp 101–118

    Google Scholar 

  • Orford CR, Gardner DL (1985) Ultrastructural histochemistry of the surface lamina of normal articular cartilage. Histochem J 17:223–233

    Article  PubMed  CAS  Google Scholar 

  • Pidd JG, Gardner DL (1987) Surface structure of Baboon (Papio anubis) hydrated articular cartilage: Study of low temperature replicas by transmission electron microscopy. J Med Primatol 16:301–309

    PubMed  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Shepard N, Mitchell N (1977) The use of ruthenium red and p-phenylenediamine to stain cartilage simultaneously for light and electron microscopy. J Histochem Cytochem 25:1163–1168

    PubMed  CAS  Google Scholar 

  • Silva DG (1969) Further ultrastructural studies on the temporomanidibular joint of the guinea pig. J Ultrastruct Res 26:148–162

    Article  PubMed  CAS  Google Scholar 

  • Silva DG (1971) Transmission and scanning electron microscope studies on the mandibular condyle of the guinea pig. Arch Oral Biol 16:889–896

    Article  PubMed  CAS  Google Scholar 

  • Silva DG, Hart JAL (1967) Ultrastructural observations on the mandibular condyle of the guinea pig. J Ultrastruct Res 20:227–243

    Article  PubMed  CAS  Google Scholar 

  • Spiegel A (1934) Der zeitliche Ablauf der Bezahnung und des Zahnwechsels bei Javamakaken (Macaca irus mordax). Z Wiss Zool 145:711–732

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Steven FS, Thomas H (1973) Preparation of insoluble collagen from human cartilage. Biochem J 135:245–247

    PubMed  CAS  Google Scholar 

  • Stockwell RA (1979) Biology of cartilage cells. Biological structure and function, vol 7. Harrison RJ, McMinn RMH (eds) Cambridge Univ Press, Cambridge

    Google Scholar 

  • Thilander B, Carlsson GE, Ingervall B (1976) Postnatal development of the human temporomandibular joint. I. A histological study. Acta Odontol Scand 34:117–126

    PubMed  CAS  Google Scholar 

  • Thyberg J, Lohmander S, Friberg U (1973) Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J Ultrastruct Res 45:407–427

    Article  PubMed  CAS  Google Scholar 

  • Toller PA (1977) Ultrastructure of the condylar articular surface in severe mandibular pain-dysfunction syndrome. Int J Oral Surg 6:297–312

    Article  PubMed  CAS  Google Scholar 

  • Toller PA, Wilcox JH (1978) Ultrastructure of the articular surface of the condyle in temporomandibular arthropathy. Oral Surg 45:232–245

    Article  PubMed  CAS  Google Scholar 

  • Wampler HW, Tebo HG, Pinero GJ (1980) Scanning electron microscopic and radiographic correlation of articular surface and supporting bone of the mandibular condyle. J Dent Res 59:754–761

    PubMed  CAS  Google Scholar 

  • Wendler D, Bergmann M, Schumacher G-H, Kunz G (1989) Das Kiefergelenk — Struktur und Funktion im Entwicklungsgang. Anat Anz 169:1–5

    PubMed  CAS  Google Scholar 

  • Wilson NHF (1978) The surface topography of the articular surfaces of the guinea-pig mandibular joint. Arch Oral Biol 23:815–820

    Article  PubMed  CAS  Google Scholar 

  • Wilson NHF, Gardner DL (1984) The microscopic structure of fibrous articular surfaces: A review. Anat Rec 209:143–152

    Article  PubMed  CAS  Google Scholar 

  • Wright CM, Moffett BC Jr (1974) The postnatal development of the human temporomandibular joint. Am J Anat 141:235–250

    Article  PubMed  CAS  Google Scholar 

  • Xipell J, Makin H, McKinnon P (1974) A method for the preparation of undecalcified bone sections for light microscopy and microradiography. Stain Technol 49:69–76

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luder, H.U., Schroeder, H.E. Light and electron microscopic morphology of the temporomandibular joint in growing and mature crab-eating monkeys (Macaca fascicularis): the condylar articular layer. Anat Embryol 181, 499–511 (1990). https://doi.org/10.1007/BF02433797

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02433797

Key words

Navigation