Skip to main content
Log in

Global solvability of the Cauchy-Dirichlet problem for nondiagonal parabolic systems with variational structure in the case of two spatial variables

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The Cauchy-Dirichlet problem for quasilinear parabolic systems of second-order equations is considered in the case of two spatial variables. Under the condition that the corresponding elliptic operator has variational structure, the global in time solvability is established. The solution is smooth almost everywhere and the number of singular points is finite. Sufficient conditions that guarantee the absence of singular points are given. Bibliography: 23 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Giaquinta and G. Modica, “Local existence for quasilinear parabolic systems under nonlinear boundary conditions”,Ann. Mat. Pura Appl., Ser., 4,149, 41–59 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Campanato, “Equazioni paraboliche del secondo ordine e spaziL 2θ (ω, δ),”Ann. Mat. Pura Appl., Ser. 4,73, 55–102 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Tolksdorf, “On some parabolic variational problems with quadratic growth,”Ann. Scuola Norm. Sup. Pisa, Ser. 4,13, No. 2, 193–223 (1986).

    MathSciNet  Google Scholar 

  4. W. Wieser, “On parabolic systems with variational structure,”Manuscripta Math.,54, No. 1-2, 53–82 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Struwe, “On the evolution of harmonic mappings of Riemannian surfaces,”Comment. Math. Helv.,60, No. 4, 558–581 (1985).

    MATH  MathSciNet  Google Scholar 

  6. Y. Chen and M. Struwe, “Existence and partial regularity results for the heat flow for harmonic maps,”Math. Z.,201, No. 1, 83–103 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  7. K. C. Chang, “Heat flow and boundary value problem for harmonic maps,”Ann. Inst. H. Poincaré Anal. Non Linéaire,6, No. 5, 363–395 (1989).

    MATH  Google Scholar 

  8. M. Struwe, “On the evolution of harmonic maps in higher dimensions,”J. Diff. Geom. 28, No. 3, 485–502 (1988).

    MATH  MathSciNet  Google Scholar 

  9. M. Struwe,Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer Verlag, Berlin (1990).

    Google Scholar 

  10. M. Giaquinta and M. Struwe, “On the partial regularity of weak solutions of nonlinear parabolic systems,”Math. Z.,179, 437–451 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Marino and A. Maugeri, “Partial Hölder continuity of solutions of nonlinear parabolic systems of second order with quadratic growth,”Boll. Un. Mat. Ital. B.,3, No. 2, 397–435 (1989).

    MATH  MathSciNet  Google Scholar 

  12. M. Marino and A. Maugeri, “Maximum principle for parabolic systems”,St. Petersburg Math. J.,3, No. 6, 1351–1358 (1992).

    MathSciNet  Google Scholar 

  13. M. Marino and A. Maugeri, “Regularity for parabolic systems in divergence form,”Methods Real Anal. PDE, Quaderno n. 14, Napoli (1992), pp. 63–82.

  14. M. Marino and A. Maugeri, “Boundedness results for parabolic systems,”Methods Real Anal. PDE, Quaderno n. 14, Napoli (1992), pp. 39–62.

  15. M. Marino and A. Maugeri, “L 2,λ Regularity of the spatial derivatives of the solutions to parabolic systems in divergence form,”Ann. Mat. Pura Appl. Ser. 4,164, 275–298 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Marino and A. Maugeri, “A remark on the note: ‘Partial Hölder continuity of the spatial derivatives of the solutions to nonlinear parabolic systems with quadratic growth’,”Rend. Sem. Mat. Univ. Padova,95, 23–28 (1996).

    MATH  MathSciNet  Google Scholar 

  17. J. Naumann and J. Wolf, “Interior differentiability of the weak solutions to parabolic systems with quadratic growth nonlinearities,” 1996.

  18. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva,Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence (1968).

    Google Scholar 

  19. M. Giaquinta,Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton (1983).

    Google Scholar 

  20. O. A. Ladyzhenskaia,The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969).

    Google Scholar 

  21. J. Nečas and V. Šverak, “On regularity of solutions of nonlinear parabolic systems,”Ann. Scuola Norm. Sup. Pisa, Ser. 4,18, No. 1, 1–11 (1991).

    Google Scholar 

  22. C. Morrey,Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York (1966).

    Google Scholar 

  23. A. A. Arkhipova, “On the regularity of solutions of boundary-value problems for quasilinear elliptic systems with quadratic nonlinearity,”J. Math. Sci. 80, No. 6, 2208–2225 (1996).

    Article  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated fromProblemy Matematicheskogo Analiza No. 16, 1997, pp. 3–40.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipova, A.A. Global solvability of the Cauchy-Dirichlet problem for nondiagonal parabolic systems with variational structure in the case of two spatial variables. J Math Sci 92, 4231–4255 (1998). https://doi.org/10.1007/BF02433433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02433433

Keywords

Navigation