Skip to main content
Log in

Glucose and related brain metabolism in normal aging

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Normal brain function is strongly correlated with undisturbed cerebral circulation and the supply of the subrates oxygen and glucose. The mature, healthy, nonstarved mammalian brain uses glucose only to obtain biologically available energy as ATP. The glycolytic and oxidative cerebral glucose metabolism is controlled by means of various mechanisms. Glucose breakdown contributes to the formation of the neurotransmitters acetylcholine, glutamate, aspartate and GABA. ATP yields the basis for maintenance of cellular homeostasis via ion homeostasis, integrity of cellular components and intracellular transportation processes, and is necessary for the formation of several neurotransmitters and neurohormones. It is demonstrated that normal cerebral aging may be associated with an incipient perturbation of cerebral circulation and metabolism causing an imbalance of cell homeostasis beyond the age of 70 years pointing to a threshold phenomenon. If the disturbance in cell homeostasis cannot be counterbalanced, “normal” cerebral aging may be expected to develop into dementia in old age beyond a critical age-related threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzheimer, A.: Uber eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr., 64: 146–148, 1907.

    Google Scholar 

  2. Alzheimer, A.: Uber eigenartige Krankheitsfälle des späteren Alters. Z. Ges. Neurol. Psychiatr., 4: 356–385, 1911.

    Google Scholar 

  3. Rossor, M.N., Iversen, L.L., Reynolds, G.P., Mountjoy, C.Q., and Roth, M.: Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br. Med. J., 288: 961–964, 1984.

    Article  CAS  Google Scholar 

  4. Roth, M.: The association of clinical and neurological findings and its bearing on the classification and aetiology of Alzheimer’s disease. Br. Med. Bull., 42: 42–50, 1986.

    PubMed  CAS  Google Scholar 

  5. Jellinger, K.: Neuropathological aspects of dementias resulting from abnormal blood and cerebrospinal fluid dynamics. Acta Neurol. Belg., 76: 83–102, 1976.

    PubMed  CAS  Google Scholar 

  6. Tomlinson, B.E.: The structural and quantitative aspects of the dementias, in Biochemistry of Dementia, edited by Roberts, P.J., Chichester, Wiley, 1980, pp. 15–52.

    Google Scholar 

  7. Gibbs, E.L., Lennox, W.G., Nims, L.F., and Gibbs, F.A.: Arterial and cerebral venous blood. Arterial-venous differences in man. J. Biol. Chem., 144: 325–332, 1942.

    CAS  Google Scholar 

  8. Gottstein, U., Bernsmeier, A., and Sedimeyer, I.: Der Kohlenhydratstoffwechsel des menschlichen Gehirns. I. Untersuchungen mit substratspezifischen enzymatischen Methoden bei normaler Hirndurchblutung. Klin. Wschr., 41: 943–948, 1963.

    Article  PubMed  CAS  Google Scholar 

  9. Hoyer, S.: Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns. Kiln. Wschr., 48: 1239–1243, 1970.

    Article  CAS  Google Scholar 

  10. Siesjö, B.K.: Brain energy metabolism. Chichester, Wiley, 1978.

    Google Scholar 

  11. Bachelard, H.S.: Specific and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro. J. Neurochem., 13: 213–222, 1971.

    Google Scholar 

  12. Hertz, M.M., Paulson, O.B., Barry, D.I., Christiansen, J.S., and Svendsen, P.A.: Insulin increases glucose transfer across the bloodbrain barrier. J. Clin. Invest., 67: 597–604, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Kahn, C.R.: The molecular mechanism of insulin action. Ann. Rev. Med., 36: 429–451, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Newsholme, E.A., and Start, C.: Regulation in metabolism. Chichester, Wiley, 1973.

    Google Scholar 

  15. Perry, E.K., Perry, R.H., Tomlinson, B.E., Blessed, G., and Gibson, P.H.: Coenzyme A acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci. Lett., 18: 105–110, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Gibson, G.E., Jope, R., and Blass, J.P.: Reduced synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J., 148: 17–29, 1975.

    PubMed  CAS  Google Scholar 

  17. Kyriakis, J.M., Hausman, R.E., and Peterson, S.W.: Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons. Proc. Natl. Acad. Sci. USA, 84: 7463–7467, 1987.

    PubMed  CAS  Google Scholar 

  18. Browning, M., Baudry, M., Bennett, W.F., and Lynch, G.: Phosphorylation-mediated changes in pyruvate dehydrogenase activity influence pyruvate-supported calcium accumulation by brain mitochondria. J. Neurochem., 36: 1932–1940, 1981.

    PubMed  CAS  Google Scholar 

  19. Hansford, R.G., and Castro, F.: Role of Ca2+ in pyruvate dehydrogenase interconversion in brain mitochondria and synaptosomes. Biochem. J., 227: 129–136, 1985.

    PubMed  CAS  Google Scholar 

  20. Denton, R.M., McCormack, J.G., and Thomas, A.P.: Hormonal regulation of intramitochondrial metabolism. Biol. Chem. Hoppe-Seyler, 367(Suppl.): 64, 1986.

    Google Scholar 

  21. Sacks, W.: Cerebral metabolism of isotopic glucose in normal human subjects. J. Appl. Physiol., 10: 37–44, 1957.

    PubMed  CAS  Google Scholar 

  22. Sacks, W.: Cerebral metabolism of doubly labeled glucose in human in vivo. J. Appl. Physiol., 20: 117–130, 1965.

    PubMed  CAS  Google Scholar 

  23. Barkulis, S.S., Geiger, A., Kawikata, Y., and Aguilar, V.: A study of the incorporation of 14C derived from glucose into free amino acids of the brain cortex. J. Neurochem., 5: 339–348, 1960.

    PubMed  CAS  Google Scholar 

  24. Geiger, A., Kawikata, Y., and Barkulis, S.S.: Major pathways of glucose utilization in the brain in brain perfusion experiments in vivo and in situ. J. Neurochem., 5: 323–338, 1960.

    PubMed  CAS  Google Scholar 

  25. Wong, K.L., and Tyce, G.M.: Glucose and amino actd metabolism in rat brain during sustained hypoglycemia. Neurochem. Res., 8: 401–415, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Monaghan, D.T., Holets, V.R., Toy, D.W., and Cotman, C.W.: Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites. Nature, 306: 176–179, 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Strange, P.G.: The structure and mechanism of neurotransmitter receptors. Implications for the structure and function of the central nervous system. Biochem. J., 249: 309–318, 1988.

    PubMed  CAS  Google Scholar 

  28. Malthe-Sørensen, D., Skrede, K., and Fonnum, F.: Calcium dependent release of D-3H-aspartate from the dorsal septum after electrical stimulation of the fimbria in vitro. Neuroscience, 5: 127–133, 1980.

    Article  Google Scholar 

  29. Walaas, I., and Fonnum, F.: Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain. Neuroscience, 5: 1691–1698, 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Davies, S.W., McBean, G.J., and Roberts, P.J.: A glutamatergic innervation of the nucleus basalis/substantia innominata. Neurosci. Lett. 45: 105–110, 1984.

    Article  PubMed  CAS  Google Scholar 

  31. Smith, C.C.T., Bowen, D.M., and Davison, A.N.: The evoked release of endogenous amino acids from tissue prisms of human neocortex. Brain Res., 269: 103–109, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Rothman, S.M., Olney, J.W.: Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol., 19: 105–111, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Greenamyre, J.T., Young, A.B., and Penny, J.B.: Quantitative autoradiographic distribution of L-[3H] glutamate-binding sites in rat central nervous system. J. Neurosci., 4: 2133–2144, 1984.

    PubMed  CAS  Google Scholar 

  34. Cotman, C.W., Monaghan, D.T., Ottersen, O.P., and Storm-Mathisen, J.: Anatomical organization of excitatory amino acid receptors and their pathways. TINS, 10: 273–280, 1987.

    CAS  Google Scholar 

  35. Cotman, C.W., and Iversen, L.L.: Excitatory amino acids in the brain-focus on NMDA receptors. TINS, 10: 263–265, 1987.

    CAS  Google Scholar 

  36. Jahr, C.E., and Stevens, C.F.: Glutamate activates multiple single channel conductances in hippocampai neurons. Nature, 325: 522–525, 1987.

    Article  PubMed  CAS  Google Scholar 

  37. Johnson, J.W., and Ascher, P.: Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature, 325: 529–531, 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Zanotto, L., and Heinemann, U.: Aspartate and glutamate induced reactions in extracellular free calcium and sodium concentration in area CA1 of “in vitro” hippocampal slices of rats. Neurosci. Lett., 35: 79–84, 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Nishizaki, T., Yamauchi, R., and Okada, Y.: Enhancement of the oxygen consumption in the hippocampal slices of the guinea pig induced by glutamate and its related substances. Neurosci. Lett., 85: 61–64, 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Havrankova, J., Schmechel, D., Roth, J., and Brownstein, M.: Identification of insulin in rat brain. Proc. Natl. Acad. Sci. USA, 75: 5737–5741, 1978.

    PubMed  CAS  Google Scholar 

  41. Young, W.S.: Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides, 8: 93–97, 1986.

    Article  PubMed  CAS  Google Scholar 

  42. Werther, G.A., Hogg, A., Oldfield, B.J., McKinley, M.J., Figdor, R., Allen, A.M., and Mendelsohn, F.A.O.: Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinol., 121: 1562–1570, 1978.

    Article  Google Scholar 

  43. Gammeltoft, S., Kowalski, A., Fehlmann, M., and van Obberghen, E.: Insulin receptors in rat brain: insulin stimulates phosphorylation of its receptor β-subunit. FEBS Lett., 172: 87–90, 1984.

    Article  PubMed  CAS  Google Scholar 

  44. Roth, R.A., Morgan, D.O., Beaudoin, J., and Sara, V.: Purification and characterization of the human brain insulin receptor. J. Biol. Chem., 261: 3753–3757, 1986.

    PubMed  CAS  Google Scholar 

  45. Chu, D.T.W., Stumpo, D.J., Blackshear, P.J., and Granner, D.L.: The inhibition of phosphoenolpyruvate carboxykinase (guanosine triphosphate) gene expression by insulin is not mediated by protein kinase C. Mol. Endocrin., 1: 53–59, 1987.

    Article  CAS  Google Scholar 

  46. Hoyer, S., and Krier, C.: Ischemia and the aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol. Aging, 7: 23–29, 1986.

    Article  PubMed  CAS  Google Scholar 

  47. Hoyer, S.: Senile dementia and Alzheimer’s disease. Brain blood flow and metabolism. Prog. Neuropsycho-pharmacol. Biol. Psychiatr., 10: 447–478, 1986.

    Article  CAS  Google Scholar 

  48. Meier-Ruge, W., Hunziker, O., Iwangoff, P., Reichlmeier, K., and Schultz, U.: Effect of age on morphological and biochemical parameters of the human brain, in The Psychobiology of Aging: Problems and Perspectives, edited by Stein, D.C., Elsevier, North Holland, 1980, pp. 297–317.

    Google Scholar 

  49. Davies, P.: Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res., 171: 319–327, 1979.

    Article  PubMed  CAS  Google Scholar 

  50. Bowen, D.M., Smith, C.B., White, P., Flack, R.H.A., Carrasco, L.H., Gedye, J.L., and Davison, A.N.: Chemical pathology of the organic dementias. II. Quantitative estimation of cellular changes in post-mortem brains. Brain, 100: 427–453, 1977.

    PubMed  CAS  Google Scholar 

  51. Smith, C.C.T., Bowen, D.M., and Davison, A.N.: The evoked release of endogenous amino acids from tissue prisms of human neocortex. Brain Res., 269: 103–109, 1983.

    Article  PubMed  CAS  Google Scholar 

  52. Hoyer, S.: The effect of age on glucose and energy metabolism in brain cortex of rats. Arch. Gerontol. Geriatr., 4: 193–203, 1985.

    Article  PubMed  CAS  Google Scholar 

  53. Iwangoff, P., Armbruster, R., Enz, A., Meier-Ruge, W., and Sandoz, P.: Glycolytic enzymes from human autoptic brain cortex: Normally aged and demented cases, in Biochemistry of Dementia, edited by Roberts, P.J., Wiley, Chichester, 1980, pp. 258–262.

    Google Scholar 

  54. Leong, S.F., and Clark, J.B.: Regional enzyme development in rat brain. Enzymes associated with glucose utilization. Biochem. J., 218: 131–138, 1984.

    PubMed  CAS  Google Scholar 

  55. Leong, S.F., Lai, J.C.K., Lim, L., and Clark, J.B.: Energy-metabolizing enzymes in brain regions of adult and aging rats. J. Neurochem., 37: 1548–1556, 1981.

    PubMed  CAS  Google Scholar 

  56. Deshmukh, D.R., Owen, O.E., and Patel, M.S.: Effect of aging on the metabolism of pyruvate and 3-hydroxybutyrate in nonsynaptic and synaptic mitochondria from rat brain. J. Neurochem., 34: 1219–1224, 1980.

    PubMed  CAS  Google Scholar 

  57. Sylvia, A.L., and Rosenthal, M.: The effect of age and lung pathology on cytochrome a, a3 redox levels in rat cerebral cortex. Brain Res., 146: 109–122, 1978.

    Article  PubMed  CAS  Google Scholar 

  58. Dekoning-Verest, I.F.: Glutamate metabolism in ageing rat brain. Mech. Ageing Develop., 13: 83–92, 1980.

    Article  CAS  Google Scholar 

  59. Tyce, G.M., and Wong, K.-L.: Conversion of glucose to neurotransmitter amino acids in the brains of young and aging rats. Exp. Geront. 15: 527–532, 1980.

    Article  CAS  Google Scholar 

  60. Freeman, G.B., and Gibson, G.E.: Selective alteration of mouse brain neurotransmitter release with age. Neurobiol. Aging, 8: 147–152, 1987.

    Article  PubMed  CAS  Google Scholar 

  61. Baudry, M., Arst, D.S., and Lynch, G.: Increased [3H] glutamate receptor binding in aged rats. Brain Res., 223: 195–198, 1981.

    Article  PubMed  CAS  Google Scholar 

  62. Changeux, J.P., and Danchin, A.: Selective stabilization of developing synapses as a mechanism for the specification of neuronal network. Nature, 264: 705–712, 1976.

    Article  PubMed  CAS  Google Scholar 

  63. Leslie, S.W., Chandler, L.J., Barr, E.M., and Farrar, R.P.: Reduced calcium uptake by rat brain mitochondria and synaptosomes in response to aging. Brain Res., 329: 177–183, 1985.

    Article  PubMed  CAS  Google Scholar 

  64. Koh, S., and Loy, R.: Age-related loss of nerve growth factor sensitivity in rat basal forebrain neurons. Brain Res., 440: 396–401, 1988.

    Article  PubMed  CAS  Google Scholar 

  65. Khachaturian, Z.S.: Towards theories of brain ageing, in Handbook of Studies on Psychiatry and Old Age, edited by Kay, D.W.K. and Burrows, G.D., Elsevier, Amsterdam, 1984, pp. 7–30.

    Google Scholar 

  66. Gottfries, C.G.: Alzheimer’s disease and senile dementia: Biochemical characteristics and aspects of treatment. Psychopharmacology, 86: 245–252, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hoyer, S. Glucose and related brain metabolism in normal aging. AGE 11, 150–156 (1988). https://doi.org/10.1007/BF02432295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02432295

Keywords

Navigation