Skip to main content
Log in

A systematic description of microstructure

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A systematic treatment of microstructure is proposed. This structural level of solid matter comprehends all features which do not belong to bulk structure, or phase structure (crystals, glasses). Zero to three-dimensional discontinuities in the phase structure are defined as microstructural elements. Prototypes of two-phase microstructures are dispersion, net, cell and duplex. There may exist microstructural order, gradients, anisotropy, as well as mixtures and transformations of microstructural elements and types. Microstructural energy is given by the product of the density of a microstructural element and its specific energy. The scale of microstructure must be based on relations to properties. Fractal analysis may become useful for the description of rugged, fissured and branched microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

Amorphous phase

α, Β :

Crystalline phases

b :

Atomic spacing (m)

d :

Geometric dimension (integer)

d Β :

Particle diameter (m)

D :

Fractal dimension (non-integer)

ɛ :

Step or interval scale (m)

f :

Volume fraction of particles

F :

Force by obstacle on dislocation (N)

G :

Shear modulus (Pa)

γ:

Designation of any microstructure

γcell, γdispersion :

Type of microstructure

k :

Boltzmann constant (JK−1)

L :

Length of irregular curve (m)

ϱ i :

Density of microstructural elements (see Table II)

ϱ αα :

Density of grain boundaries (m−1)

ϱ αΒ :

Density of interfaces (m−1)

S Г :

Microstructural specific entropy (JK−1m−3)

S i :

Spacing of microstructural elements, grain diameter (m)

δΤ :

Increase in yield stress (Pa)

U i :

Specific energy of microstructural elements (see Table II)

δU i :

Interaction energy of microstructural elements (see Table II)

u Г :

Microstructure energy density (Jm−3)

W :

Number of configurations in a structure

x, y, z :

Cordinates in geometric space

N a :

Number of atoms per mole (mol−1)

V m :

Molar volume (m3mol−1)

References

  1. F. N. Rhines,Met. Trans. 8A (1977) 127.

    Google Scholar 

  2. E. Hornbogen,Pract. Metall. 5 (1968) 51.

    CAS  Google Scholar 

  3. Idem, Acta Metall. 32 (1984) 615.

    Article  CAS  Google Scholar 

  4. J. M. Martin andR. D. Doherty, “Stability of Microstructure in Metallic Systems” (Cambridge University Press, 1976).

  5. E. Hornbogen, in Proceedings of ICSMA5, Aachen, Vol. 2 (Pergamon, 1979) p. 1337.

  6. E. E. Underwood, “Quantitative Stereology” (Addision-Wesley, Reading, Pennsylvania, 1970).

    Google Scholar 

  7. S. A. Saltykov, “Stereo metrische metallographie” (translated from Russian edition) (Verlag für Grundstoff-industrie, Leipzig, 1974).

    Google Scholar 

  8. H. Bunge, “Texture Analysis in Material Science” (Butterworth, London, 1982).

    Google Scholar 

  9. T. P. Harrington andT. P. Maan,J. Mater. Sci. 19 (1984) 761.

    Article  Google Scholar 

  10. K. Lücke,Z. Metallkde. 75 (1984) 948.

    Google Scholar 

  11. J. Gurland in Proceedings of 2nd International Congress on Stereology, edited by H. Elia (Springer, Berlin, 1967) p. 250.

    Google Scholar 

  12. P. G. DeGennes,La Recherche 7 (1976) 919.

    Google Scholar 

  13. R. DeWit in Proceedings of 4th International Congress on Stereology, (edited by E. E. Underwood and R. DeWit) (National Bureau of Standards, Washington, D.C., 1976) p. 45

    Google Scholar 

  14. R. T. DeHoff andS. M. Gehl, in Proceedings of 4th International Congress on Stereology, edited by E. E. Underwood and R. DeWit (National Bureau of Standards, Washington, D.C., 1976) p. 29.

    Google Scholar 

  15. E. Hornbogen, in Proceedings of 6th International Symposium on High-Purity Materials in Science and Technology, Dresden, 1985 Vol. I (Academy of Science) p. 24.

  16. H. Horn, “Trees” (Princeton University Press, 1971).

  17. M. Berry, in Proceedings of 4th International Congress on Stereology, edited by E. E. Underwood and R. DeWit (National Bureau of Standards, Washington, D.C., 1976) p. 49.

    Google Scholar 

  18. B. T. Mandelbrot, “The Fractal Geometry of Nature (Freeman, New York, 1983).

    Google Scholar 

  19. B. T. Mandelbrot andD. E. Passoja (eds), “Fractal Aspects of Materials” (Materials Research Society, Pittsburgh, 1984).

    Google Scholar 

  20. P. G. DeGennes, “Scaling Concepts in Polymer Physics” (Cornell University Press, Ithaca, 1979).

    Google Scholar 

  21. C. S. Smith,Metall. Rev. 9 (1964) 1.

    CAS  Google Scholar 

  22. E. Hornbogen,Met. Trans. 10A. (1979) 947.

    Google Scholar 

  23. Idem, in Proceedings of 5th International Conference on Rapid Quenching and Solidification of Metals (RQ5), Würzburg, 1984 (North Holland) p. 785.

  24. M. Heatherly, in Proceedings of ICSMA6, Melbourne, (Pergamon, 1982) p. 1184.

  25. J. M. Gibson andL. R. Davison (eds) “Layered Structures, Epitaxy, and Interfaces,” (Materials Research Society, Pittsburgh, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornbogen, E. A systematic description of microstructure. J Mater Sci 21, 3737–3747 (1986). https://doi.org/10.1007/BF02431607

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431607

Keywords

Navigation