Skip to main content
Log in

Rheological properties and impedance spectroscopy of PMMA-PVdF blend and PMMA gel polymer electrolytes for advanced lithium batteries

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present study, blend ionic conducting membranes formed by poly(methylmethacrylate (PMMA) / poly(vinilydenefluoride) (PVDF) (blend ratio PMMA/PVdF=80/20), lithium perchlorate (LiClO4) as a salt and a mixture of ethylene carbonate (EC)-propylene carbonate (PC) as plasticizer are prepared and characterized by impedance spectroscopy and dynamic rheological experiments. We compared the results obtained on the blends with those on PMMA gel-based polymer electrolytes incorporating the same EC/PC mixture of plasticizer and the same quantities of salt. The main focus of this study is to illustrate the rheological data of the gels and blends electrolytes to point up their mechanical stability with the temperature in sight of the technological application.

The conductivity values are reported in the 20–100 °C temperature range for different lithium salt contents, while the rheological behaviour has been recorded up to 140 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applications of Electroactive Polymers (B. Scrosati, Ed.) Chapman & Hall, London, 1993.

    Google Scholar 

  2. G.B. Appetecchi, F. Croce, G. Dautzenberg, B. Scrosati, J. Power Sources66, 77 (1997).

    Article  CAS  Google Scholar 

  3. K.M. Abraham, H.S. Choe, D. Pasquariello, Electrochim. Acta43, 2399 (1998).

    Article  CAS  Google Scholar 

  4. A. Hooper, M. Gauthier and A. Belanger, in: Electrochemical Science and Technology of Polymers, (R.G. Linford, Ed.) Elsevier Applied Science, London, 1990, Vol. 2, pp. 375.

    Google Scholar 

  5. D.F. Schriver, B.L. Parke, M.A. Ratner, R. Dupon, T. Wong, M. Browdwin, Solid State Ionics5, 83 (1981).

    Article  Google Scholar 

  6. J.R. MacCallum, C.A. Vincent, in: Polymer electrolyte reviews Elsevier, London and New York, 1987, pp. 141.

  7. E. Cazzanelli, G. Mariotto, F. Croce, G.B. Appetecchi and B. Scrosati, Electrochim. Acta40, 2379 (1995).

    Article  CAS  Google Scholar 

  8. D. Ostrovskii, L.M. Torell, G.B. Appetecchi and B. Scrosati, Solid State Ionics106, 19 (1998).

    Article  CAS  Google Scholar 

  9. M. Alamgir, K.M. Abraham, J. Electrochem. Soc.140, L96 (1993).

    Google Scholar 

  10. G. Pistoia, A. Antonini, G. Wang, J. Power Sources58, 139 (1996).

    Article  CAS  Google Scholar 

  11. T.K. Tsunemi, H. Ohno, E. Tsuchida, Electrochim. Acta28, 833 (1983).

    Article  CAS  Google Scholar 

  12. E. Tsuchida, H. Ohno, T.K. Tsunemi, Electrochim. Acta28, 591 (1983).

    Article  CAS  Google Scholar 

  13. C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, P. Rigand, Solid State Ionics36, 165 (1989).

    Article  Google Scholar 

  14. M. Watanable, S. Nagano, K. Sanvi, N. Ogata, J. Power Sources20, 327 (1987).

    Article  Google Scholar 

  15. J.R. MacCallum, M.J. Smith, C.A. Vincent, Solid State Ionics11, 307 (1981).

    Article  Google Scholar 

  16. C. Booth, C.V. Nicholas, D.J. Wilson, in: Polymer Electrolyte Reviews 2 (J.R. MacCallum, C.A. Vincent, Eds.) Elsevier, London, 1989, pp. 229.

    Google Scholar 

  17. M. Oliver, US Patent No. 5 (1997), 658–685.

  18. G.D. Macro, M. Lanza, M. Pierceccini, Solid State Ionics89, 117 (1996).

    Article  Google Scholar 

  19. N. Tsutsumi, G.T. Davis, A.S. Dereggi, Macromolecule24, 6392 (1991).

    Article  CAS  Google Scholar 

  20. Z. Jiang, B. Carroll, K.M. Abraham, Electrochimica Acta42, 2667 (1997).

    Article  CAS  Google Scholar 

  21. O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, C. Truche, Solid State Ionics66, 97 (1993).

    Article  CAS  Google Scholar 

  22. M.H. Lee, H.J. Kim, E. Kim, S.B. Rhee, M.J. Moon, Solid State Ionics85, 91 (1996).

    Article  Google Scholar 

  23. G.B. Appetecchi, Electrochimica Acta140, 997 (1995).

    Google Scholar 

  24. S. Rajendran, O. Mahendran, R. Kannan, Fuel81, 1077 (2002).

    Article  CAS  Google Scholar 

  25. H. Vogel, Phys. Z.,22, 645 (1921).

    CAS  Google Scholar 

  26. G. Tamman and W. Hesse, Z. Anorg. Allg. Chem.156, 245 (1926).

    Article  CAS  Google Scholar 

  27. G.S. Fulcher, J. Amer. Ceram. Soc.8, 339 (1925).

    Article  CAS  Google Scholar 

  28. Kevin P. Menard in: Dynamic Mechanical Analysis, CRC Press LLC, 1999.

  29. D.V. Krevelin in: Properties of Polymers, Elsevier, New York, 1987, pp. 289.

    Google Scholar 

  30. J.D. Ferry in: Viscoelastic Properties of Polymers (3dr ed., Wiley, New York) 1980.

    Google Scholar 

  31. T. Boccaccio, A. Bottino, G. Capannelli and P. Piaggio, Journal of Membrane Science210, 315 (2002).

    Article  CAS  Google Scholar 

  32. S. Kim Chi and M. Oh Seung, Electrochimica Acta45, 2101 (2000).

    Article  Google Scholar 

  33. H.H. Winter, M. Mours, Adv. Polymer Sci.134, 165 (1997).

    Article  CAS  Google Scholar 

  34. H.H. Winter, F. Chambon, J. Rheol.30, 367 (1986).

    Article  CAS  Google Scholar 

  35. G.M. Kavanagh, S.B. Ross-Murphy, Prog. Polym. Sci.23, 533 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Nicotera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicotera, I., Coppola, L., Oliviero, C. et al. Rheological properties and impedance spectroscopy of PMMA-PVdF blend and PMMA gel polymer electrolytes for advanced lithium batteries. Ionics 11, 87–94 (2005). https://doi.org/10.1007/BF02430406

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430406

Keywords

Navigation